PI(18:1/18:1)
Formula: C45H83O13P (862.5571)
Chinese Name: 1,2-二油酰-sn-甘油-磷脂酰肌醇
BioDeep ID: BioDeep_00000031028
( View LC/MS Profile)
SMILES: [H][C@@](COC(=O)CCCCCCCC=CCCCCCCCC)(COP(O)(=O)O[C@@]1([H])C(O)C(O)C(O)[C@@]([H])(O)C1O)OC(=O)CCCCCCCC=CCCCCCCCC
Found 87 Sample Hits
m/z | Adducts | Species | Organ | Scanning | Sample | |
---|---|---|---|---|---|---|
827.5576 | [M+H-2H2O]+PPM:17.3 |
Mus musculus | Urinary bladder | MALDI (CHCA) |
HR2MSI_mouse_urinary_bladder - S096 - PXD001283Resolution: 10μm, 260x134
Mass spectrometry imaging of phospholipids in mouse urinary bladder (imzML dataset) |
|
827.5553 | [M+H-2H2O]+PPM:14.6 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito08_47 - MTBLS58Resolution: 17μm, 301x111
|
|
827.5553 | [M+H-2H2O]+PPM:14.6 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito08_48 - MTBLS58Resolution: 17μm, 294x107
|
|
827.5551 | [M+H-2H2O]+PPM:14.3 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito01_03 - MTBLS58Resolution: 17μm, 159x110
|
|
862.5781 | [M-H2O+NH4]+PPM:2.6 |
Mus musculus | Lung | MALDI (DHB) |
image1 - MTBLS2075Resolution: 40μm, 187x165
Fig. 2 MALDI-MSI data from the same mouse lung tissue analyzed in Fig. 1. A: Optical image of the post-MSI, H&E-stained tissue section. B–D, F–G: Ion images of (B) m/z 796.6855 ([U13C-DPPC+Na]+), (C) m/z 756.5514 ([PC32:0+Na]+), (D) m/z 765.6079 ([D9-PC32:0+Na]+), (F) m/z 754.5359 ([PC32:1+Na]+), and (G) m/z 763.5923 ([D9-PC32:1+Na]+). E, H: Ratio images of (E) [D9-PC32:0+Na]+:[PC32:0+Na]+ and (H) [D9-PC32:1+Na]+:[PC32:1+Na]+. Part-per-million (ppm) mass errors are indicated in parentheses. All images were visualized using total-ion-current normalization and using hotspot removal (high quantile = 99%). DPPC = PC16:0/16:0. U13C-DPPC, universally 13C-labeled dipalmitoyl PC; PC, phosphatidylcholine; MSI, mass spectrometry imaging; H&E, hematoxylin and eosin.
Fig 1-3, Fig S1-S3, S5 |
|
845.5524 | [M+H-H2O]+PPM:1.7 |
Mus musculus | Left upper arm | MALDI (CHCA) |
357_l_total ion count - Limb defect imaging - Monash UniversityResolution: 50μm, 97x131
Diseased |
|
827.5487 | [M+H-2H2O]+PPM:6.6 |
Mus musculus | Lung | MALDI (DHB) |
image3 - MTBLS2075Resolution: 40μm, 146x190
Fig. 4 MALDI-MSI data of mouse lung tissue after administration with D9-choline and U13C-DPPC–containing Poractant alfa surfactant (labels administered 12 h prior to tissue collection). Ion images of (A) m/z 796.6856 ([U13C-DPPC+Na]+), (B) m/z 756.5154 [PC32:0+Na]+), and (C) m/z 765.6079 ([D9-PC32:0+Na]+). D: Overlay image of [U13C-PC32:0+Na]+ (red) and [D9-PC32:0+Na]+ (green). Part-per-million (ppm) mass errors are indicated in parentheses. All images were visualized using total-ion-current normalization and using hotspot removal (high quantile = 99%). DPPC = PC16:0/16:0. MSI, mass spectrometry imaging; PC, phosphatidylcholine; U13C-DPPC, universally 13C-labeled dipalmitoyl PC. |
|
862.5561 | [M]+PPM:0.5 |
Mus musculus | Lung | MALDI (DHB) |
image3 - MTBLS2075Resolution: 40μm, 146x190
Fig. 4 MALDI-MSI data of mouse lung tissue after administration with D9-choline and U13C-DPPC–containing Poractant alfa surfactant (labels administered 12 h prior to tissue collection). Ion images of (A) m/z 796.6856 ([U13C-DPPC+Na]+), (B) m/z 756.5154 [PC32:0+Na]+), and (C) m/z 765.6079 ([D9-PC32:0+Na]+). D: Overlay image of [U13C-PC32:0+Na]+ (red) and [D9-PC32:0+Na]+ (green). Part-per-million (ppm) mass errors are indicated in parentheses. All images were visualized using total-ion-current normalization and using hotspot removal (high quantile = 99%). DPPC = PC16:0/16:0. MSI, mass spectrometry imaging; PC, phosphatidylcholine; U13C-DPPC, universally 13C-labeled dipalmitoyl PC. |
|
862.5724 | [M-H2O+NH4]+PPM:9.2 |
Mus musculus | Lung | MALDI (DHB) |
image3 - MTBLS2075Resolution: 40μm, 146x190
Fig. 4 MALDI-MSI data of mouse lung tissue after administration with D9-choline and U13C-DPPC–containing Poractant alfa surfactant (labels administered 12 h prior to tissue collection). Ion images of (A) m/z 796.6856 ([U13C-DPPC+Na]+), (B) m/z 756.5154 [PC32:0+Na]+), and (C) m/z 765.6079 ([D9-PC32:0+Na]+). D: Overlay image of [U13C-PC32:0+Na]+ (red) and [D9-PC32:0+Na]+ (green). Part-per-million (ppm) mass errors are indicated in parentheses. All images were visualized using total-ion-current normalization and using hotspot removal (high quantile = 99%). DPPC = PC16:0/16:0. MSI, mass spectrometry imaging; PC, phosphatidylcholine; U13C-DPPC, universally 13C-labeled dipalmitoyl PC. |
|
827.5591 | [M+H-2H2O]+PPM:19.2 |
Mus musculus | Lung | MALDI (DHB) |
image2 - MTBLS2075Resolution: 40μm, 550x256
Supplementary Figure S6. Ion distribution images for (a) [PC36:4+Na]+ (m/z 804.5514) and (b)
[PC38:6+Na]+ (m/z 828.5515) obtained from mouse lung tissue collected 6 h after administration of D9-
choline and U13C-DPPC–containing CHF5633. Parts-per-million (ppm) mass errors are indicated in
parentheses. (c) Magnification of the boxed region in (a) with selected bronchiolar regions outlined in
white boxes. (d) The corresponding H&E-stained tissue section with the same selected bronchiolar
regions outlined in black boxes. These data demonstrate the co-localisation of the polyunsaturated lipids
PC36:4 and PC38:6 with the bronchiolar regions of the lung. All MSI images were visualised using
total ion current normalisation and hotspot removal (high quantile = 99%). |
|
827.5594 | [M+H-2H2O]+PPM:19.5 |
Macropus giganteus | Brain | MALDI (BPYN) |
170321_kangaroobrain-dan3-pos_maxof50.0_med1 - 170321_kangaroobrain-dan3-pos_maxof50.0_med1Resolution: 50μm, 81x50
Sample information
Organism: Macropus giganteus (kangaroo)
Organism part: Brain
Condition: Wildtype
Sample growth conditions: Wild |
|
845.5404 | [M+H-H2O]+PPM:15.9 |
Macropus giganteus | Brain | MALDI (BPYN) |
170321_kangaroobrain-dan3-pos_maxof50.0_med1 - 170321_kangaroobrain-dan3-pos_maxof50.0_med1Resolution: 50μm, 81x50
Sample information
Organism: Macropus giganteus (kangaroo)
Organism part: Brain
Condition: Wildtype
Sample growth conditions: Wild |
|
827.5308 | [M+H-2H2O]+PPM:15 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_3 - MTBLS385Resolution: 75μm, 121x68
|
|
845.5667 | [M+H-H2O]+PPM:15.2 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_3 - MTBLS385Resolution: 75μm, 121x68
|
|
863.5682 | [M+H]+PPM:4.4 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_3 - MTBLS385Resolution: 75μm, 121x68
|
|
880.6074 | [M+NH4]+PPM:18.7 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_3 - MTBLS385Resolution: 75μm, 121x68
|
|
845.5634 | [M+H-H2O]+PPM:11.3 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_4 - MTBLS385Resolution: 17μm, 82x80
|
|
863.564 | [M+H]+PPM:0.4 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_4 - MTBLS385Resolution: 17μm, 82x80
|
|
827.5427 | [M+H-2H2O]+PPM:0.7 |
Rattus norvegicus | Brain | MALDI (CHCA) |
2018June2820180628_brain_POS_3s2_validated - MTBLS3154Resolution: 17μm, 213x141
All MSI experiments were performed on a hybrid linear ion trap 21 T FT-ICR mass spectrometer at the National High Magnetic Field Laboratory (NHMFL) at Florida State University (Tallahassee, FL). A Velos Pro linear ion trap (Thermo Scientific, San Jose, CA) was combined with NHMFL-designed external linear quadrupole ion trap, quadrupole ion transfer optics and a novel dynamically harmonized ICR cell, which is operated at 7.5 V trapping potential[1]. Briefly, the cell uses 120° cell segments for ion excitation and detection, for improved excitation electric field, detection sensitivity and reduced third harmonic signals[2][3].
The commercial ion source and stacked ring ion guide were replaced with an elevated-pressure MALDI ion source incorporating a dual-ion funnel interface (Spectroglyph LLC, Kennewick, WA) as has been described previously[4]. Voltages within the funnels were 625 kHz, 150 V peak-to-peak (first, high-pressure ion funnel) and 1.2 MHz, 90 V peak-to-peak (second, low-pressure ion funnel). An electric field gradient of ∼10 V/cm was maintained within the dual-funnel system, with a gradient of 100 V/cm between the sample and the funnel inlet. The system was equipped with a Q-switched, frequency-tripled Nd:YLF laser emitting 349 nm light (Explorer One, Spectra Physics, Mountain View, CA). The laser was operated at a repetition rate of 1 kHz and pulse energy of ∼1.2 μJ. Pressure within the ion source was set to 10 mbar in the first ion funnel and 2 mbar in the second ion funnel. MALDI stage motion was synchronized with ion accumulation using the Velos trigger signal indicating commencement of the ion trap injection event, as previously described[4]. The mass spectrometer was operated with an ion injection time of 250 ms and automatic gain control (AGC) was turned off. A transient duration of 3.1 s was used for ultrahigh mass resolving power analyses, resulting in a total time of 4s per pixel. Spectra were obtained in both positive and negative mode, at 100 μm spatial resolution. Total number of pixels per brain section were approximately 22 000 and 24 h of experimental time. A Predator data station was used for ion excitation and detection[5].
Refs:
[1] Hendrickson CL, Quinn JP, Kaiser NK, Smith DF, Blakney GT, Chen T, Marshall AG, Weisbrod CR, Beu SC. 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer: A National Resource for Ultrahigh Resolution Mass Analysis. J Am Soc Mass Spectrom. 2015 Sep;26(9):1626-32. doi:10.1007/s13361-015-1182-2. Epub 2015 Jun 20. PMID:26091892.
[2] Hendrickson CL, Beu SC, Blakney GT, Kaiser NK, McIntosh DG, Quinn JP, Marshall AG. In Optimized cell geometry for Fourier transform ion cyclotron resonance mass spectrometry, Proceedings of the 57th ASMS Conference on Mass Spectrometry and Allied Topics, Philadelphia, PA, May 31 to June 4; Philadelphia, PA, 2009.
[3] Chen T, Beu SC, Kaiser NK, Hendrickson CL. Note: Optimized circuit for excitation and detection with one pair of electrodes for improved Fourier transform ion cyclotron resonance mass spectrometry. Rev Sci Instrum. 2014 Jun;85(6):066107. doi:10.1063/1.4883179. PMID:24985871.
[4] Belov ME, Ellis SR, Dilillo M, Paine MRL, Danielson WF, Anderson GA, de Graaf EL, Eijkel GB, Heeren RMA, McDonnell LA. Design and Performance of a Novel Interface for Combined Matrix-Assisted Laser Desorption Ionization at Elevated Pressure and Electrospray Ionization with Orbitrap Mass Spectrometry. Anal Chem. 2017 Jul 18;89(14):7493-7501. doi:10.1021/acs.analchem.7b01168. Epub 2017 Jun 28. PMID:28613836.
[5] Blakney GT, Hendrickson CL, Marshall AG. Predator data station: A fast data acquisition system for advanced FT-ICR MS experiments. Int. J. Mass Spectrom. 2011;306 (2-3), 246- 252. doi:10.1016/j.ijms.2011.03.009. |
|
863.5677 | [M+H]+PPM:3.8 |
Homo sapiens | esophagus | DESI () |
LNTO29_16_2 - MTBLS385Resolution: 17μm, 95x101
|
|
863.5659 | [M+H]+PPM:1.8 |
Homo sapiens | esophagus | DESI () |
TO42T - MTBLS385Resolution: 17μm, 69x81
|
|
827.5346 | [M+H-2H2O]+PPM:10.4 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_9 - MTBLS385Resolution: 75μm, 89x74
|
|
845.5684 | [M+H-H2O]+PPM:17.3 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_9 - MTBLS385Resolution: 75μm, 89x74
|
|
863.5689 | [M+H]+PPM:5.2 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_9 - MTBLS385Resolution: 75μm, 89x74
|
|
827.536 | [M+H-2H2O]+PPM:8.8 |
Mus musculus | Liver | MALDI (CHCA) |
Salmonella_final_pos_recal - MTBLS2671Resolution: 17μm, 691x430
A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium.
[dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671. |
|
863.5705 | [M+H]+PPM:7.1 |
Mus musculus | Liver | MALDI (CHCA) |
Salmonella_final_pos_recal - MTBLS2671Resolution: 17μm, 691x430
A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium.
[dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671. |
|
863.5673 | [M+H]+PPM:3.4 |
Homo sapiens | esophagus | DESI () |
LNTO30_8M_1 - MTBLS385Resolution: 17μm, 69x54
|
|
863.5658 | [M+H]+PPM:1.6 |
Homo sapiens | esophagus | DESI () |
TO39T - MTBLS385Resolution: 17μm, 69x81
|
|
845.5678 | [M+H-H2O]+PPM:16.5 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
80TopL, 50TopR, 70BottomL, 60BottomR-profile - MTBLS415Resolution: 17μm, 137x136
The human colorectal adenocarcinoma sample was excised during a surgical operation performed at the Imperial College Healthcare NHS Trust. The sample and procedures were carried out in accordance with ethical approval (14/EE/0024). |
|
862.5726 | [M-H2O+NH4]+PPM:9 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
80TopL, 50TopR, 70BottomL, 60BottomR-profile - MTBLS415Resolution: 17μm, 137x136
The human colorectal adenocarcinoma sample was excised during a surgical operation performed at the Imperial College Healthcare NHS Trust. The sample and procedures were carried out in accordance with ethical approval (14/EE/0024). |
|
863.5649 | [M+H]+PPM:0.6 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
80TopL, 50TopR, 70BottomL, 60BottomR-profile - MTBLS415Resolution: 17μm, 137x136
The human colorectal adenocarcinoma sample was excised during a surgical operation performed at the Imperial College Healthcare NHS Trust. The sample and procedures were carried out in accordance with ethical approval (14/EE/0024). |
|
827.5305 | [M+H-2H2O]+PPM:15.4 |
Mytilus edulis | gill | MALDI (DHB) |
20190202_MS38_Crassostrea_Gill_350-1500_DHB_pos_A25_11um_305x210 - MTBLS2960Resolution: 11μm, 305x210
single cell layer |
|
827.5395 | [M+H-2H2O]+PPM:4.5 |
Mytilus edulis | mantle | MALDI (DHB) |
20190216_MS38_Mytilus_mantle_350-1500_DHB_pos_A26_10um_275x210 - MTBLS2960Resolution: 10μm, 275x210
|
|
845.5414 | [M+H-H2O]+PPM:14.7 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
520TopL, 490TopR, 510BottomL, 500BottomR-profile - MTBLS415Resolution: 17μm, 147x131
The human colorectal adenocarcinoma sample was excised during a surgical operation performed at the Imperial College Healthcare NHS Trust. The sample and procedures were carried out in accordance with ethical approval (14/EE/0024). |
|
862.5738 | [M-H2O+NH4]+PPM:7.6 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
520TopL, 490TopR, 510BottomL, 500BottomR-profile - MTBLS415Resolution: 17μm, 147x131
The human colorectal adenocarcinoma sample was excised during a surgical operation performed at the Imperial College Healthcare NHS Trust. The sample and procedures were carried out in accordance with ethical approval (14/EE/0024). |
|
863.5686 | [M+H]+PPM:4.9 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
520TopL, 490TopR, 510BottomL, 500BottomR-profile - MTBLS415Resolution: 17μm, 147x131
The human colorectal adenocarcinoma sample was excised during a surgical operation performed at the Imperial College Healthcare NHS Trust. The sample and procedures were carried out in accordance with ethical approval (14/EE/0024). |
|
845.5561 | [M+H-H2O]+PPM:2.7 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
439TopL, 409TopR, 429BottomL, 419BottomR-profile - MTBLS415Resolution: 17μm, 157x136
The human colorectal adenocarcinoma sample was excised during a surgical operation performed at the Imperial College Healthcare NHS Trust. The sample and procedures were carried out in accordance with ethical approval (14/EE/0024). |
|
862.576 | [M-H2O+NH4]+PPM:5.1 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
439TopL, 409TopR, 429BottomL, 419BottomR-profile - MTBLS415Resolution: 17μm, 157x136
The human colorectal adenocarcinoma sample was excised during a surgical operation performed at the Imperial College Healthcare NHS Trust. The sample and procedures were carried out in accordance with ethical approval (14/EE/0024). |
|
863.5711 | [M+H]+PPM:7.8 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
439TopL, 409TopR, 429BottomL, 419BottomR-profile - MTBLS415Resolution: 17μm, 157x136
The human colorectal adenocarcinoma sample was excised during a surgical operation performed at the Imperial College Healthcare NHS Trust. The sample and procedures were carried out in accordance with ethical approval (14/EE/0024). |
|
827.5272 | [M+H-2H2O]+PPM:19.4 |
Homo sapiens | NA | DESI () |
160TopL,130TopR,150BottomL,140BottomR-profile - MTBLS415Resolution: 17μm, 142x136
|
|
845.5597 | [M+H-H2O]+PPM:7 |
Homo sapiens | NA | DESI () |
160TopL,130TopR,150BottomL,140BottomR-profile - MTBLS415Resolution: 17μm, 142x136
|
|
862.5718 | [M-H2O+NH4]+PPM:9.9 |
Homo sapiens | NA | DESI () |
160TopL,130TopR,150BottomL,140BottomR-profile - MTBLS415Resolution: 17μm, 142x136
|
|
863.5667 | [M+H]+PPM:2.7 |
Homo sapiens | NA | DESI () |
160TopL,130TopR,150BottomL,140BottomR-profile - MTBLS415Resolution: 17μm, 142x136
|
|
863.5668 | [M+H]+PPM:2.8 |
Homo sapiens | esophagus | DESI () |
LNTO29_16_3 - MTBLS385Resolution: 17μm, 108x107
|
|
845.5675 | [M+H-H2O]+PPM:16.2 |
Homo sapiens | esophagus | DESI () |
LNTO26_7_1 - MTBLS385Resolution: 17μm, 75x74
|
|
863.5682 | [M+H]+PPM:4.4 |
Homo sapiens | esophagus | DESI () |
LNTO26_7_1 - MTBLS385Resolution: 17μm, 75x74
|
|
845.5684 | [M+H-H2O]+PPM:17.3 |
Homo sapiens | esophagus | DESI () |
LNTO26_7_2 - MTBLS385Resolution: 17μm, 135x101
|
|
863.5687 | [M+H]+PPM:5 |
Homo sapiens | esophagus | DESI () |
LNTO26_7_2 - MTBLS385Resolution: 17μm, 135x101
|
|
845.5672 | [M+H-H2O]+PPM:15.8 |
Homo sapiens | esophagus | DESI () |
LNTO26_7_3 - MTBLS385Resolution: 75μm, 82x88
|
|
863.5679 | [M+H]+PPM:4.1 |
Homo sapiens | esophagus | DESI () |
LNTO26_7_3 - MTBLS385Resolution: 75μm, 82x88
|
|
863.5643 | [M+H]+PPM:0.1 |
Homo sapiens | esophagus | DESI () |
TO40T - MTBLS385Resolution: 17μm, 82x74
|
|
863.5663 | [M+H]+PPM:2.2 |
Homo sapiens | esophagus | DESI () |
TO31T - MTBLS385Resolution: 75μm, 56x54
|
|
863.5681 | [M+H]+PPM:4.3 |
Homo sapiens | esophagus | DESI () |
TO29T - MTBLS385Resolution: 75μm, 56x48
|
|
863.5664 | [M+H]+PPM:2.3 |
Homo sapiens | esophagus | DESI () |
TO41T - MTBLS385Resolution: 75μm, 69x43
|
|
863.5675 | [M+H]+PPM:3.6 |
Homo sapiens | esophagus | DESI () |
LNTO30_8M_2 - MTBLS385Resolution: 75μm, 108x68
|
|
863.5675 | [M+H]+PPM:3.6 |
Homo sapiens | esophagus | DESI () |
LNTO30_8M_3 - MTBLS385Resolution: 75μm, 69x54
|
|
863.5674 | [M+H]+PPM:3.5 |
Homo sapiens | esophagus | DESI () |
LNTO30_8M_4 - MTBLS385Resolution: 75μm, 62x48
|
|
827.5541 | [M+H-2H2O]+PPM:13.1 |
Homo sapiens | esophagus | DESI () |
LNTO30_8M_5 - MTBLS385Resolution: 75μm, 56x54
|
|
863.5674 | [M+H]+PPM:3.5 |
Homo sapiens | esophagus | DESI () |
LNTO30_8M_5 - MTBLS385Resolution: 75μm, 56x54
|
|
863.5672 | [M+H]+PPM:3.3 |
Homo sapiens | esophagus | DESI () |
LNTO30_17_2 - MTBLS385Resolution: 75μm, 82x54
|
|
845.5684 | [M+H-H2O]+PPM:17.3 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_5 - MTBLS385Resolution: 75μm, 135x94
|
|
863.5687 | [M+H]+PPM:5 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_5 - MTBLS385Resolution: 75μm, 135x94
|
|
827.5341 | [M+H-2H2O]+PPM:11.1 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_7 - MTBLS385Resolution: 75μm, 69x54
|
|
845.5676 | [M+H-H2O]+PPM:16.3 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_7 - MTBLS385Resolution: 75μm, 69x54
|
|
863.568 | [M+H]+PPM:4.2 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_7 - MTBLS385Resolution: 75μm, 69x54
|
|
827.5285 | [M+H-2H2O]+PPM:17.8 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_8 - MTBLS385Resolution: 75μm, 69x61
|
|
845.5673 | [M+H-H2O]+PPM:16 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_8 - MTBLS385Resolution: 75μm, 69x61
|
|
863.5681 | [M+H]+PPM:4.3 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_8 - MTBLS385Resolution: 75μm, 69x61
|
|
845.5668 | [M+H-H2O]+PPM:15.4 |
Homo sapiens | esophagus | DESI () |
LNTO22_2_1 - MTBLS385Resolution: 75μm, 89x88
|
|
863.5675 | [M+H]+PPM:3.6 |
Homo sapiens | esophagus | DESI () |
LNTO22_2_1 - MTBLS385Resolution: 75μm, 89x88
|
|
845.5672 | [M+H-H2O]+PPM:15.8 |
Homo sapiens | esophagus | DESI () |
LNTO22_2_2 - MTBLS385Resolution: 75μm, 135x94
|
|
863.5682 | [M+H]+PPM:4.4 |
Homo sapiens | esophagus | DESI () |
LNTO22_2_2 - MTBLS385Resolution: 75μm, 135x94
|
|
845.5674 | [M+H-H2O]+PPM:16.1 |
Homo sapiens | esophagus | DESI () |
LNTO26_16_1 - MTBLS385Resolution: 75μm, 95x88
|
|
863.568 | [M+H]+PPM:4.2 |
Homo sapiens | esophagus | DESI () |
LNTO26_16_1 - MTBLS385Resolution: 75μm, 95x88
|
|
845.5654 | [M+H-H2O]+PPM:13.7 |
Homo sapiens | esophagus | DESI () |
LNTO29_18_2 - MTBLS385Resolution: 75μm, 62x68
|
|
863.567 | [M+H]+PPM:3 |
Homo sapiens | esophagus | DESI () |
LNTO29_18_2 - MTBLS385Resolution: 75μm, 62x68
|
|
863.5674 | [M+H]+PPM:3.5 |
Homo sapiens | esophagus | DESI () |
LNTO30_7_1 - MTBLS385Resolution: 75μm, 69x68
|
|
863.5674 | [M+H]+PPM:3.5 |
Homo sapiens | esophagus | DESI () |
LNTO30_7_2 - MTBLS385Resolution: 75μm, 82x68
|
|
845.5659 | [M+H-H2O]+PPM:14.3 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
240TopL, 210TopR, 230BottomL, 220BottomR-centroid - MTBLS176Resolution: 50μm, 142x141
|
|
863.5666 | [M+H]+PPM:2.6 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
240TopL, 210TopR, 230BottomL, 220BottomR-centroid - MTBLS176Resolution: 50μm, 142x141
|
|
880.6056 | [M+NH4]+PPM:16.7 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
240TopL, 210TopR, 230BottomL, 220BottomR-centroid - MTBLS176Resolution: 50μm, 142x141
|
|
845.5664 | [M+H-H2O]+PPM:14.9 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
200TopL, 170TopR, 190BottomL, 180BottomR-centroid - MTBLS176Resolution: 50μm, 132x126
|
|
863.5672 | [M+H]+PPM:3.3 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
200TopL, 170TopR, 190BottomL, 180BottomR-centroid - MTBLS176Resolution: 50μm, 132x126
|
|
845.5657 | [M+H-H2O]+PPM:14.1 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
160TopL,130TopR,150BottomL,140BottomR-centroid - MTBLS176Resolution: 50μm, 142x136
|
|
863.5663 | [M+H]+PPM:2.2 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
160TopL,130TopR,150BottomL,140BottomR-centroid - MTBLS176Resolution: 50μm, 142x136
|
|
845.5664 | [M+H-H2O]+PPM:14.9 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
120TopL, 90TopR, 110BottomL, 100BottomR-centroid - MTBLS176Resolution: 50μm, 132x136
|
|
863.567 | [M+H]+PPM:3 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
120TopL, 90TopR, 110BottomL, 100BottomR-centroid - MTBLS176Resolution: 50μm, 132x136
|
|
PI(18:1(9Z)/18:1(9Z)) is a phosphatidylinositol. Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common. PI(18:1(9Z)/18:1(9Z)), in particular, consists of one chain of oleic acid at the C-1 position and one chain of oleic acid at the C-2 position. The oleic acid moiety is derived from vegetable oils, especially olive and canola oil, while the oleic acid moiety is derived from vegetable oils, especially olive and canola oil. The inositol group that is part of every phosphatidylinositol lipid is covalently linked to the phosphate group that acts as a bridge to the lipid tail. In most organisms, the stereochemical form of this inositol is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial), although other forms can be found in certain plant phosphatidylinositols. Phosphatidylinositol is especially abundant in brain tissue, where it can amount to 10\\% of the phospholipids, but it is present in all tissues and cell types. There is usually less of it than of phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. In animal tissues, phosphatidylinositol is the primary source of the arachidonic acid required for biosynthesis of eicosanoids, including prostaglandins, via the action of the enzyme phospholipase A2. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs contain almost exclusively stearic acid at carbon 1 and arachidonic acid at carbon 2. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol. PI(18:1(9Z)/18:1(9Z))is a phosphatidylinositol. Phosphatidylinositols are important lipids, both as a key membrane constituent and as a participant in essential metabolic processes, both directly and via a number of metabolites. Phosphatidylinositols are acidic (anionic) phospholipids that consist of a phosphatidic acid backbone, linked via the phosphate group to inositol (hexahydroxycyclohexane). Phosphatidylinositols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 18 and 20 carbons are the most common.PI(18:1(9Z)/18:1(9Z)), in particular, consists of two 9Z-octadecenoyl chains at positions C-1 and C-2 to the C-2 atom. In most organisms, the stereochemical form of the last is myo-D-inositol (with one axial hydroxyl in position 2 with the remainder equatorial. Phosphatidylinositol can be phosphorylated by a number of different kinases that place the phosphate moiety on positions 4 and 5 of the inositol ring, although position 3 can also be phosphorylated by a specific kinase. Seven different isomers are known, but the most important in both quantitative and biological terms are phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol and the phosphatidylinositol phosphates are the main source of diacylglycerols that serve as signaling molecules, via the action of phospholipase C enzymes. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PIs contain almost exclusively stearic acid at carbon 1 and arachidonic acid at carbon 2. PIs composed exclusively of non-phosphorylated inositol exhibit a net charge of -1 at physiological pH. Molecules with phosphorylated inositol (such as PIP, PIP2, PIP3, etc.) are termed polyphosphoinositides. The polyphosphoinositides are important intracellular transducers of signals emanating from the plasma membrane. The synthesis of PI involves CDP-activated 1,2-diacylglycerol condensation with myo-inositol.