MTBLS3154
2018June2820180628_brain_POS_3s2_validated
DOI:
10.1021/acs.analchem.9b04768
空间分辨率: 17μm,
213x141
创建时间: 2025-01-06 16:22:12
物种: Rattus norvegicus (Brain
)
状态: normal
仪器: MALDI (CHCA)
离子数量: 1337 / 1723 (77.6%)
数据源: https://pmc.ncbi.nlm.nih.gov/articles/PMC7031845/
All MSI experiments were performed on a hybrid linear ion trap 21 T FT-ICR mass spectrometer at the National High Magnetic Field Laboratory (NHMFL) at Florida State University (Tallahassee, FL). A Velos Pro linear ion trap (Thermo Scientific, San Jose, CA) was combined with NHMFL-designed external linear quadrupole ion trap, quadrupole ion transfer optics and a novel dynamically harmonized ICR cell, which is operated at 7.5 V trapping potential[1]. Briefly, the cell uses 120° cell segments for ion excitation and detection, for improved excitation electric field, detection sensitivity and reduced third harmonic signals[2][3]. The commercial ion source and stacked ring ion guide were replaced with an elevated-pressure MALDI ion source incorporating a dual-ion funnel interface (Spectroglyph LLC, Kennewick, WA) as has been described previously[4]. Voltages within the funnels were 625 kHz, 150 V peak-to-peak (first, high-pressure ion funnel) and 1.2 MHz, 90 V peak-to-peak (second, low-pressure ion funnel). An electric field gradient of ∼10 V/cm was maintained within the dual-funnel system, with a gradient of 100 V/cm between the sample and the funnel inlet. The system was equipped with a Q-switched, frequency-tripled Nd:YLF laser emitting 349 nm light (Explorer One, Spectra Physics, Mountain View, CA). The laser was operated at a repetition rate of 1 kHz and pulse energy of ∼1.2 μJ. Pressure within the ion source was set to 10 mbar in the first ion funnel and 2 mbar in the second ion funnel. MALDI stage motion was synchronized with ion accumulation using the Velos trigger signal indicating commencement of the ion trap injection event, as previously described[4]. The mass spectrometer was operated with an ion injection time of 250 ms and automatic gain control (AGC) was turned off. A transient duration of 3.1 s was used for ultrahigh mass resolving power analyses, resulting in a total time of 4s per pixel. Spectra were obtained in both positive and negative mode, at 100 μm spatial resolution. Total number of pixels per brain section were approximately 22 000 and 24 h of experimental time. A Predator data station was used for ion excitation and detection[5]. Refs: [1] Hendrickson CL, Quinn JP, Kaiser NK, Smith DF, Blakney GT, Chen T, Marshall AG, Weisbrod CR, Beu SC. 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer: A National Resource for Ultrahigh Resolution Mass Analysis. J Am Soc Mass Spectrom. 2015 Sep;26(9):1626-32. doi:10.1007/s13361-015-1182-2. Epub 2015 Jun 20. PMID:26091892. [2] Hendrickson CL, Beu SC, Blakney GT, Kaiser NK, McIntosh DG, Quinn JP, Marshall AG. In Optimized cell geometry for Fourier transform ion cyclotron resonance mass spectrometry, Proceedings of the 57th ASMS Conference on Mass Spectrometry and Allied Topics, Philadelphia, PA, May 31 to June 4; Philadelphia, PA, 2009. [3] Chen T, Beu SC, Kaiser NK, Hendrickson CL. Note: Optimized circuit for excitation and detection with one pair of electrodes for improved Fourier transform ion cyclotron resonance mass spectrometry. Rev Sci Instrum. 2014 Jun;85(6):066107. doi:10.1063/1.4883179. PMID:24985871. [4] Belov ME, Ellis SR, Dilillo M, Paine MRL, Danielson WF, Anderson GA, de Graaf EL, Eijkel GB, Heeren RMA, McDonnell LA. Design and Performance of a Novel Interface for Combined Matrix-Assisted Laser Desorption Ionization at Elevated Pressure and Electrospray Ionization with Orbitrap Mass Spectrometry. Anal Chem. 2017 Jul 18;89(14):7493-7501. doi:10.1021/acs.analchem.7b01168. Epub 2017 Jun 28. PMID:28613836. [5] Blakney GT, Hendrickson CL, Marshall AG. Predator data station: A fast data acquisition system for advanced FT-ICR MS experiments. Int. J. Mass Spectrom. 2011;306 (2-3), 246- 252. doi:10.1016/j.ijms.2011.03.009.
m/z
用于成像:m/z:
Name:
Formula:
Adducts:
组织形态学是研究组织结构和形态的学科,这些组织是由共同执行特定功能的细胞群组成的。组织是器官的基本构建块,对于多细胞生物体的功能至关重要。
组织形态学在空间/单细胞代谢分析中尝试阐明以下方面:
- 细胞类型:识别组织内的不同细胞类型及其特定功能。
- 细胞排列:观察细胞是如何组织的,无论是在层中、簇中,还是在细胞外基质中分散。
- 细胞外基质:研究细胞外基质的组成和结构,这在不同组织类型之间可能会有很大差异。
- 特殊结构:检查特定组织独有的特殊结构,如纤毛、微绒毛或细胞间连接。
点击离子m/z
值查看其质谱成像热图和在多个空间区域中的代谢物表达值。
低维度嵌入与聚类
空间/单细胞代谢组学数据通常由高维数据集组成,每个细胞点由数千个代谢物的表达水平特征化。UMAP通过降低数据的维度同时保留细胞点之间的重要结构和关系,帮助理解这种复杂的数据。
组织形态学
点击Region ID
查看特定组织区域的参考质谱图,点击Anatomy ID
的链接查看跨多个物种和器官样本的解剖本体论。
代表性质谱图
从空间聚类结果的每个区域的点中提取质谱数据,然后对质谱进行二叉树聚类计算,获得最大的聚类簇。计算质谱在聚类簇中的碎片信号响应强度的平均值,最终构建特定空间区域的代表性质谱图结果。
通过在多个质谱图簇上进行自举采样,生成了代谢物在多个空间组织区域的表达数据。
表达模式
C-均值模糊聚类算法是一种分割聚类技术,它允许每个数据点以不同的成员度属于多个聚类。该算法旨在最小化数据点与聚类中心之间的加权平方距离之和,其中权重是数据点对聚类的成员度。
每个点/单元的数据点被分配给每个簇的隶属度,代表该点/单元属于该簇的可能性。隶属度介于0到1之间,一个数据点在所有簇上的隶属度之和为1。
空间/单细胞组学中的应用:
- 细胞类型鉴定:在异质群体中识别不同的细胞类型。
- 疾病亚型分类:根据细胞特征发现疾病的亚型。
- 发育轨迹分析:理解细胞在不同发育阶段的进展。