Loading...

MTBLS2671


Salmonella_final_pos_recal

DOI: 10.1021/jasms.1c00240
空间分辨率: 17μm,   691x430
创建时间: 2025-01-08 13:22:11
物种: Mus musculus (Liver)  
状态: normal
仪器: MALDI (CHCA)
离子数量: 4478 / 5077 (88.2%)
数据源: https://www.ebi.ac.uk/metabolights/editor/MTBLS2671/

A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium. [dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671.


输入 m/z 用于成像:





m/z:

Name:
Formula:
Adducts:



组织形态学是研究组织结构和形态的学科,这些组织是由共同执行特定功能的细胞群组成的。组织是器官的基本构建块,对于多细胞生物体的功能至关重要。

组织形态学在空间/单细胞代谢分析中尝试阐明以下方面:

  1. 细胞类型:识别组织内的不同细胞类型及其特定功能。
  2. 细胞排列:观察细胞是如何组织的,无论是在层中、簇中,还是在细胞外基质中分散。
  3. 细胞外基质:研究细胞外基质的组成和结构,这在不同组织类型之间可能会有很大差异。
  4. 特殊结构:检查特定组织独有的特殊结构,如纤毛、微绒毛或细胞间连接。

点击离子m/z值查看其质谱成像热图和在多个空间区域中的代谢物表达值。


低维度嵌入与聚类

空间/单细胞代谢组学数据通常由高维数据集组成,每个细胞点由数千个代谢物的表达水平特征化。UMAP通过降低数据的维度同时保留细胞点之间的重要结构和关系,帮助理解这种复杂的数据。

A vs B:
vs

组织形态学

点击Region ID查看特定组织区域的参考质谱图,点击Anatomy ID的链接查看跨多个物种和器官样本的解剖本体论。

代表性质谱图

从空间聚类结果的每个区域的点中提取质谱数据,然后对质谱进行二叉树聚类计算,获得最大的聚类簇。计算质谱在聚类簇中的碎片信号响应强度的平均值,最终构建特定空间区域的代表性质谱图结果。

通过在多个质谱图簇上进行自举采样,生成了代谢物在多个空间组织区域的表达数据。

表达模式

C-均值模糊聚类算法是一种分割聚类技术,它允许每个数据点以不同的成员度属于多个聚类。该算法旨在最小化数据点与聚类中心之间的加权平方距离之和,其中权重是数据点对聚类的成员度。

每个点/单元的数据点被分配给每个簇的隶属度,代表该点/单元属于该簇的可能性。隶属度介于0到1之间,一个数据点在所有簇上的隶属度之和为1。

空间/单细胞组学中的应用:

  • 细胞类型鉴定:在异质群体中识别不同的细胞类型。
  • 疾病亚型分类:根据细胞特征发现疾病的亚型。
  • 发育轨迹分析:理解细胞在不同发育阶段的进展。