Buspirone

8-{4-[4-(pyrimidin-2-yl)piperazin-1-yl]butyl}-8-azaspiro[4.5]decane-7,9-dione

Formula: C21H31N5O2 (385.2478)
Chinese Name: 丁螺环酮
BioDeep ID: BioDeep_00000001444 ( View LC/MS Profile)
SMILES: C1CCC2(C1)CC(=O)N(C(=O)C2)CCCCN3CCN(CC3)C4=NC=CC=N4



Found 42 Sample Hits

m/z Adducts Species Organ Scanning Sample
403.2861 [M+NH4]+
PPM:11.2
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito03_17 - MTBLS58
Resolution: 17μm, 208x108

Description

1 male adult wild-type rat was obtained from Inserm U1085 - Irset Research Institute (University of Rennes1, France). Animals were age 60 days and were reared under ad-lib conditions. Care and handling of all animals complied with EU directive 2010/63/EU on the protection of animals used for scientific purposes. The whole epididymis was excised from each animal immediately post-mortem, loosely wrapped rapidly in an aluminum foil and a 2.5% (w/v) carboxymethylcellulose (CMC) solution was poured to embed the epididymis to preserve their morphology. To remove air bubbles, the filled aluminum molds was gently freezed by depositing it on isopentane or dry ice, then on the nitrogen vapors and finally by progressively dipping the CMC/sample coated with aluminum foil into liquid nitrogen (or only flush with liquid nitrogen). Frozen tissues were stored at -80 °C until use to avoid degradation.

403.2861 [M+NH4]+
PPM:11.2
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito03_18 - MTBLS58
Resolution: 17μm, 208x104

Description

403.2864 [M+NH4]+
PPM:11.9
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_43 - MTBLS58
Resolution: 17μm, 298x106

Description

424.3421 [M+K]+
PPM:8
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_43 - MTBLS58
Resolution: 17μm, 298x106

Description

403.2867 [M+NH4]+
PPM:12.7
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_44 - MTBLS58
Resolution: 17μm, 299x111

Description

424.3421 [M+K]+
PPM:8
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_44 - MTBLS58
Resolution: 17μm, 299x111

Description

403.2867 [M+NH4]+
PPM:12.7
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_46 - MTBLS58
Resolution: 17μm, 298x106

Description

424.3422 [M+K]+
PPM:7.8
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_46 - MTBLS58
Resolution: 17μm, 298x106

Description

403.2868 [M+NH4]+
PPM:12.9
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_47 - MTBLS58
Resolution: 17μm, 301x111

Description

424.3422 [M+K]+
PPM:7.8
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_47 - MTBLS58
Resolution: 17μm, 301x111

Description

403.2871 [M+NH4]+
PPM:13.7
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_48 - MTBLS58
Resolution: 17μm, 294x107

Description

424.3422 [M+K]+
PPM:7.8
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_48 - MTBLS58
Resolution: 17μm, 294x107

Description

403.2863 [M+NH4]+
PPM:11.7
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito01_04 - MTBLS58
Resolution: 17μm, 178x91

Description

403.2863 [M+NH4]+
PPM:11.7
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito01_03 - MTBLS58
Resolution: 17μm, 159x110

Description

403.2862 [M+NH4]+
PPM:11.4
Rattus norvegicus normal MALDI (DHB)
epik_dhb_head_ito01_05 - MTBLS58
Resolution: 17μm, 183x105

Description

403.2862 [M+NH4]+
PPM:11.4
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito01_06 - MTBLS58
Resolution: 17μm, 183x103

Description

403.2865 [M+NH4]+
PPM:12.2
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito03_14 - MTBLS58
Resolution: 17μm, 205x103

Description

385.272 [M-H2O+NH4]+
PPM:2.5
Mus musculus Lung MALDI (DHB)
image2 - MTBLS2075
Resolution: 40μm, 550x256

Description

Supplementary Figure S6. Ion distribution images for (a) [PC36:4+Na]+ (m/z 804.5514) and (b) [PC38:6+Na]+ (m/z 828.5515) obtained from mouse lung tissue collected 6 h after administration of D9- choline and U13C-DPPC–containing CHF5633. Parts-per-million (ppm) mass errors are indicated in parentheses. (c) Magnification of the boxed region in (a) with selected bronchiolar regions outlined in white boxes. (d) The corresponding H&E-stained tissue section with the same selected bronchiolar regions outlined in black boxes. These data demonstrate the co-localisation of the polyunsaturated lipids PC36:4 and PC38:6 with the bronchiolar regions of the lung. All MSI images were visualised using total ion current normalisation and hotspot removal (high quantile = 99%).

386.259 [M+H]+
PPM:10.3
Macropus giganteus Brain MALDI (BPYN)
170321_kangaroobrain-dan3-pos_maxof50.0_med1 - 170321_kangaroobrain-dan3-pos_maxof50.0_med1
Resolution: 50μm, 81x50

Description

Sample information Organism: Macropus giganteus (kangaroo) Organism part: Brain Condition: Wildtype Sample growth conditions: Wild

403.2825 [M+NH4]+
PPM:2.3
Macropus giganteus Brain MALDI (BPYN)
170321_kangaroobrain-dan3-pos_maxof50.0_med1 - 170321_kangaroobrain-dan3-pos_maxof50.0_med1
Resolution: 50μm, 81x50

Description

Sample information Organism: Macropus giganteus (kangaroo) Organism part: Brain Condition: Wildtype Sample growth conditions: Wild

368.2397 [M+H-H2O]+
PPM:13
Homo sapiens esophagus DESI ()
LNTO22_1_4 - MTBLS385
Resolution: 17μm, 82x80

Description

408.2334 [M+Na]+
PPM:8.8
Rattus norvegicus Brain MALDI (CHCA)
2018June2820180628_brain_POS_3s2_validated - MTBLS3154
Resolution: 17μm, 213x141

Description

All MSI experiments were performed on a hybrid linear ion trap 21 T FT-ICR mass spectrometer at the National High Magnetic Field Laboratory (NHMFL) at Florida State University (Tallahassee, FL). A Velos Pro linear ion trap (Thermo Scientific, San Jose, CA) was combined with NHMFL-designed external linear quadrupole ion trap, quadrupole ion transfer optics and a novel dynamically harmonized ICR cell, which is operated at 7.5 V trapping potential[1]. Briefly, the cell uses 120° cell segments for ion excitation and detection, for improved excitation electric field, detection sensitivity and reduced third harmonic signals[2][3]. The commercial ion source and stacked ring ion guide were replaced with an elevated-pressure MALDI ion source incorporating a dual-ion funnel interface (Spectroglyph LLC, Kennewick, WA) as has been described previously[4]. Voltages within the funnels were 625 kHz, 150 V peak-to-peak (first, high-pressure ion funnel) and 1.2 MHz, 90 V peak-to-peak (second, low-pressure ion funnel). An electric field gradient of ∼10 V/cm was maintained within the dual-funnel system, with a gradient of 100 V/cm between the sample and the funnel inlet. The system was equipped with a Q-switched, frequency-tripled Nd:YLF laser emitting 349 nm light (Explorer One, Spectra Physics, Mountain View, CA). The laser was operated at a repetition rate of 1 kHz and pulse energy of ∼1.2 μJ. Pressure within the ion source was set to 10 mbar in the first ion funnel and 2 mbar in the second ion funnel. MALDI stage motion was synchronized with ion accumulation using the Velos trigger signal indicating commencement of the ion trap injection event, as previously described[4]. The mass spectrometer was operated with an ion injection time of 250 ms and automatic gain control (AGC) was turned off. A transient duration of 3.1 s was used for ultrahigh mass resolving power analyses, resulting in a total time of 4s per pixel. Spectra were obtained in both positive and negative mode, at 100 μm spatial resolution. Total number of pixels per brain section were approximately 22 000 and 24 h of experimental time. A Predator data station was used for ion excitation and detection[5]. Refs: [1] Hendrickson CL, Quinn JP, Kaiser NK, Smith DF, Blakney GT, Chen T, Marshall AG, Weisbrod CR, Beu SC. 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer: A National Resource for Ultrahigh Resolution Mass Analysis. J Am Soc Mass Spectrom. 2015 Sep;26(9):1626-32. doi:10.1007/s13361-015-1182-2. Epub 2015 Jun 20. PMID:26091892. [2] Hendrickson CL, Beu SC, Blakney GT, Kaiser NK, McIntosh DG, Quinn JP, Marshall AG. In Optimized cell geometry for Fourier transform ion cyclotron resonance mass spectrometry, Proceedings of the 57th ASMS Conference on Mass Spectrometry and Allied Topics, Philadelphia, PA, May 31 to June 4; Philadelphia, PA, 2009. [3] Chen T, Beu SC, Kaiser NK, Hendrickson CL. Note: Optimized circuit for excitation and detection with one pair of electrodes for improved Fourier transform ion cyclotron resonance mass spectrometry. Rev Sci Instrum. 2014 Jun;85(6):066107. doi:10.1063/1.4883179. PMID:24985871. [4] Belov ME, Ellis SR, Dilillo M, Paine MRL, Danielson WF, Anderson GA, de Graaf EL, Eijkel GB, Heeren RMA, McDonnell LA. Design and Performance of a Novel Interface for Combined Matrix-Assisted Laser Desorption Ionization at Elevated Pressure and Electrospray Ionization with Orbitrap Mass Spectrometry. Anal Chem. 2017 Jul 18;89(14):7493-7501. doi:10.1021/acs.analchem.7b01168. Epub 2017 Jun 28. PMID:28613836. [5] Blakney GT, Hendrickson CL, Marshall AG. Predator data station: A fast data acquisition system for advanced FT-ICR MS experiments. Int. J. Mass Spectrom. 2011;306 (2-3), 246- 252. doi:10.1016/j.ijms.2011.03.009.

368.2415 [M+H-H2O]+
PPM:8.1
Homo sapiens esophagus DESI ()
TO42T - MTBLS385
Resolution: 17μm, 69x81

Description

385.2711 [M-H2O+NH4]+
PPM:0.2
Mus musculus Liver MALDI (CHCA)
Salmonella_final_pos_recal - MTBLS2671
Resolution: 17μm, 691x430

Description

A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium. [dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671.

386.2536 [M+H]+
PPM:3.7
Mus musculus Liver MALDI (CHCA)
Salmonella_final_pos_recal - MTBLS2671
Resolution: 17μm, 691x430

Description

A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium. [dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671.

403.282 [M+NH4]+
PPM:1
Mus musculus Liver MALDI (CHCA)
Salmonella_final_pos_recal - MTBLS2671
Resolution: 17μm, 691x430

Description

A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium. [dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671.

424.3418 [M+K]+
PPM:8.8
Mus musculus Liver MALDI (CHCA)
Salmonella_final_pos_recal - MTBLS2671
Resolution: 17μm, 691x430

Description

A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium. [dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671.

368.24 [M+H-H2O]+
PPM:12.1
Homo sapiens colorectal adenocarcinoma DESI ()
80TopL, 50TopR, 70BottomL, 60BottomR-profile - MTBLS415
Resolution: 17μm, 137x136

Description

The human colorectal adenocarcinoma sample was excised during a surgical operation performed at the Imperial College Healthcare NHS Trust. The sample and procedures were carried out in accordance with ethical approval (14/EE/0024).

385.2738 [M-H2O+NH4]+
PPM:7.2
Mytilus edulis gill MALDI (DHB)
20190202_MS38_Crassostrea_Gill_350-1500_DHB_pos_A25_11um_305x210 - MTBLS2960
Resolution: 11μm, 305x210

Description

single cell layer class_4 is the gill structure cells, metabolite ion 534.2956 is the top representive ion of this type of cell

368.2357 [M+H-H2O]+
PPM:6.2
Homo sapiens colorectal adenocarcinoma DESI ()
439TopL, 409TopR, 429BottomL, 419BottomR-profile - MTBLS415
Resolution: 17μm, 157x136

Description

The human colorectal adenocarcinoma sample was excised during a surgical operation performed at the Imperial College Healthcare NHS Trust. The sample and procedures were carried out in accordance with ethical approval (14/EE/0024).

368.2393 [M+H-H2O]+
PPM:14.1
Homo sapiens NA DESI ()
160TopL,130TopR,150BottomL,140BottomR-profile - MTBLS415
Resolution: 17μm, 142x136

Description

368.2418 [M+H-H2O]+
PPM:7.3
Homo sapiens esophagus DESI ()
TO31T - MTBLS385
Resolution: 75μm, 56x54

Description

368.242 [M+H-H2O]+
PPM:6.7
Homo sapiens esophagus DESI ()
LNTO30_8M_2 - MTBLS385
Resolution: 75μm, 108x68

Description

368.2414 [M+H-H2O]+
PPM:8.3
Homo sapiens esophagus DESI ()
LNTO30_8M_5 - MTBLS385
Resolution: 75μm, 56x54

Description

368.2417 [M+H-H2O]+
PPM:7.5
Homo sapiens esophagus DESI ()
LNTO30_17_2 - MTBLS385
Resolution: 75μm, 82x54

Description

368.2419 [M+H-H2O]+
PPM:7
Homo sapiens esophagus DESI ()
LNTO30_7_2 - MTBLS385
Resolution: 75μm, 82x68

Description

385.273 [M-H2O+NH4]+
PPM:5.1
Mus musculus brain MALDI (DHB)
Brain02_Bregma1-42_03 - MTBLS313
Resolution: 17μm, 483x403

Description

386.2616 [M+H]+
PPM:17
Mus musculus brain MALDI (DHB)
Brain02_Bregma1-42_03 - MTBLS313
Resolution: 17μm, 483x403

Description

368.2414 [M+H-H2O]+
PPM:8.3
Homo sapiens colorectal adenocarcinoma DESI ()
240TopL, 210TopR, 230BottomL, 220BottomR-centroid - MTBLS176
Resolution: 50μm, 142x141

Description

368.2418 [M+H-H2O]+
PPM:7.3
Homo sapiens colorectal adenocarcinoma DESI ()
200TopL, 170TopR, 190BottomL, 180BottomR-centroid - MTBLS176
Resolution: 50μm, 132x126

Description

368.2414 [M+H-H2O]+
PPM:8.3
Homo sapiens colorectal adenocarcinoma DESI ()
160TopL,130TopR,150BottomL,140BottomR-centroid - MTBLS176
Resolution: 50μm, 142x136

Description

368.2418 [M+H-H2O]+
PPM:7.3
Homo sapiens colorectal adenocarcinoma DESI ()
120TopL, 90TopR, 110BottomL, 100BottomR-centroid - MTBLS176
Resolution: 50μm, 132x136

Description


Buspirone is only found in individuals that have used or taken this drug. It is an anxiolytic agent and a serotonin receptor agonist belonging to the azaspirodecanedione class of compounds. Its structure is unrelated to those of the benzodiazepines, but it has an efficacy comparable to diazepam. [PubChem]Buspirone binds to 5-HT type 1A serotonin receptors on presynaptic neurons in the dorsal raphe and on postsynaptic neurons in the hippocampus, thus inhibiting the firing rate of 5-HT-containing neurons in the dorsal raphe. Buspirone also binds at dopamine type 2 (DA2) receptors, blocking presynaptic dopamine receptors. Buspirone increases firing in the locus ceruleus, an area of brain where norepinephrine cell bodies are found in high concentration. The net result of buspirone actions is that serotonergic activity is suppressed while noradrenergic and dopaminergic cell firing is enhanced. CONFIDENCE standard compound; INTERNAL_ID 520; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6951; ORIGINAL_PRECURSOR_SCAN_NO 6950 CONFIDENCE standard compound; INTERNAL_ID 520; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6947; ORIGINAL_PRECURSOR_SCAN_NO 6945 CONFIDENCE standard compound; INTERNAL_ID 520; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6914; ORIGINAL_PRECURSOR_SCAN_NO 6912 CONFIDENCE standard compound; INTERNAL_ID 520; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6879; ORIGINAL_PRECURSOR_SCAN_NO 6877 CONFIDENCE standard compound; INTERNAL_ID 520; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6955; ORIGINAL_PRECURSOR_SCAN_NO 6953 CONFIDENCE standard compound; INTERNAL_ID 520; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6922; ORIGINAL_PRECURSOR_SCAN_NO 6920 D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05B - Anxiolytics > N05BE - Azaspirodecanedione derivatives D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C28197 - Antianxiety Agent Buspirone is an orally active 5-HT1A receptor agonist, and a dopamine D2 autoreceptorsant antagonist. Buspirone is an anxiolytic agent, and can be used for the generalized anxiety disorder research[1].