DG(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)/0:0)
Formula: C41H68O5 (640.5066)
Chinese Name: 1-亚油酰-2-花生四烯酰甘油酯
BioDeep ID: BioDeep_00000028590
( View LC/MS Profile)
SMILES: [H][C@](CO)(COC(=O)CCCCCCC\C=C/C\C=C/CCCCC)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC
Found 55 Sample Hits
m/z | Adducts | Species | Organ | Scanning | Sample | |
---|---|---|---|---|---|---|
623.5041 | [M+H-H2O]+PPM:1.2 |
Rattus norvegicus | Brain | MALDI (CHCA) |
Spectroswiss - sol_2x_br_2 - 2016-09-29_07h40m45sResolution: 17μm, 488x193
|
|
623.5026 | [M+H-H2O]+PPM:1.2 |
Homo sapiens | Liver | MALDI (DHB) |
20171107_FIT4_DHBpos_p70_s50 - Rappez et al (2021) SpaceM reveals metabolic states of single cellsResolution: 50μm, 70x70
|
|
641.5113 | [M+H]+PPM:4.1 |
Homo sapiens | Liver | MALDI (DHB) |
20171107_FIT4_DHBpos_p70_s50 - Rappez et al (2021) SpaceM reveals metabolic states of single cellsResolution: 50μm, 70x70
|
|
623.5033 | [M+H-H2O]+PPM:0.1 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito03_17 - MTBLS58Resolution: 17μm, 208x108
1 male adult wild-type rat was obtained from Inserm U1085 - Irset Research Institute (University of Rennes1, France). Animals were age 60 days and were reared under ad-lib conditions. Care and handling of all animals complied with EU directive 2010/63/EU on the protection of animals used for scientific purposes. The whole epididymis was excised from each animal immediately post-mortem, loosely wrapped rapidly in an aluminum foil and a 2.5% (w/v) carboxymethylcellulose (CMC) solution was poured to embed the epididymis to preserve their morphology. To remove air bubbles, the filled aluminum molds was gently freezed by depositing it on isopentane or dry ice, then on the nitrogen vapors and finally by progressively dipping the CMC/sample coated with aluminum foil into liquid nitrogen (or only flush with liquid nitrogen). Frozen tissues were stored at -80 °C until use to avoid degradation. |
|
641.5118 | [M+H]+PPM:3.3 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito03_17 - MTBLS58Resolution: 17μm, 208x108
1 male adult wild-type rat was obtained from Inserm U1085 - Irset Research Institute (University of Rennes1, France). Animals were age 60 days and were reared under ad-lib conditions. Care and handling of all animals complied with EU directive 2010/63/EU on the protection of animals used for scientific purposes. The whole epididymis was excised from each animal immediately post-mortem, loosely wrapped rapidly in an aluminum foil and a 2.5% (w/v) carboxymethylcellulose (CMC) solution was poured to embed the epididymis to preserve their morphology. To remove air bubbles, the filled aluminum molds was gently freezed by depositing it on isopentane or dry ice, then on the nitrogen vapors and finally by progressively dipping the CMC/sample coated with aluminum foil into liquid nitrogen (or only flush with liquid nitrogen). Frozen tissues were stored at -80 °C until use to avoid degradation. |
|
623.5032 | [M+H-H2O]+PPM:0.3 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito03_18 - MTBLS58Resolution: 17μm, 208x104
|
|
641.5118 | [M+H]+PPM:3.3 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito03_18 - MTBLS58Resolution: 17μm, 208x104
|
|
623.5033 | [M+H-H2O]+PPM:0.1 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito08_43 - MTBLS58Resolution: 17μm, 298x106
|
|
640.4994 | [M]+PPM:10.5 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito08_43 - MTBLS58Resolution: 17μm, 298x106
|
|
641.5118 | [M+H]+PPM:3.3 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito08_43 - MTBLS58Resolution: 17μm, 298x106
|
|
623.5032 | [M+H-H2O]+PPM:0.3 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito08_44 - MTBLS58Resolution: 17μm, 299x111
|
|
641.5118 | [M+H]+PPM:3.3 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito08_44 - MTBLS58Resolution: 17μm, 299x111
|
|
623.5032 | [M+H-H2O]+PPM:0.3 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito08_46 - MTBLS58Resolution: 17μm, 298x106
|
|
641.5117 | [M+H]+PPM:3.5 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito08_46 - MTBLS58Resolution: 17μm, 298x106
|
|
623.5032 | [M+H-H2O]+PPM:0.3 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito08_47 - MTBLS58Resolution: 17μm, 301x111
|
|
640.4992 | [M]+PPM:10.8 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito08_47 - MTBLS58Resolution: 17μm, 301x111
|
|
641.5118 | [M+H]+PPM:3.3 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito08_47 - MTBLS58Resolution: 17μm, 301x111
|
|
623.5032 | [M+H-H2O]+PPM:0.3 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito08_48 - MTBLS58Resolution: 17μm, 294x107
|
|
640.4992 | [M]+PPM:10.8 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito08_48 - MTBLS58Resolution: 17μm, 294x107
|
|
641.5117 | [M+H]+PPM:3.5 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito08_48 - MTBLS58Resolution: 17μm, 294x107
|
|
623.5032 | [M+H-H2O]+PPM:0.3 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito01_04 - MTBLS58Resolution: 17μm, 178x91
|
|
641.5116 | [M+H]+PPM:3.6 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito01_04 - MTBLS58Resolution: 17μm, 178x91
|
|
623.5031 | [M+H-H2O]+PPM:0.4 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito01_03 - MTBLS58Resolution: 17μm, 159x110
|
|
640.4992 | [M]+PPM:10.8 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito01_03 - MTBLS58Resolution: 17μm, 159x110
|
|
641.5116 | [M+H]+PPM:3.6 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito01_03 - MTBLS58Resolution: 17μm, 159x110
|
|
623.5032 | [M+H-H2O]+PPM:0.3 |
Rattus norvegicus | normal | MALDI (DHB) |
epik_dhb_head_ito01_05 - MTBLS58Resolution: 17μm, 183x105
|
|
640.4992 | [M]+PPM:10.8 |
Rattus norvegicus | normal | MALDI (DHB) |
epik_dhb_head_ito01_05 - MTBLS58Resolution: 17μm, 183x105
|
|
641.5117 | [M+H]+PPM:3.5 |
Rattus norvegicus | normal | MALDI (DHB) |
epik_dhb_head_ito01_05 - MTBLS58Resolution: 17μm, 183x105
|
|
623.5032 | [M+H-H2O]+PPM:0.3 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito01_06 - MTBLS58Resolution: 17μm, 183x103
|
|
640.4993 | [M]+PPM:10.6 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito01_06 - MTBLS58Resolution: 17μm, 183x103
|
|
641.5117 | [M+H]+PPM:3.5 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito01_06 - MTBLS58Resolution: 17μm, 183x103
|
|
623.5032 | [M+H-H2O]+PPM:0.3 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito03_14 - MTBLS58Resolution: 17μm, 205x103
|
|
640.4994 | [M]+PPM:10.5 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito03_14 - MTBLS58Resolution: 17μm, 205x103
|
|
641.5117 | [M+H]+PPM:3.5 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito03_14 - MTBLS58Resolution: 17μm, 205x103
|
|
623.504 | [M+H-H2O]+PPM:1 |
Mus musculus | Lung | MALDI (DHB) |
image1 - MTBLS2075Resolution: 40μm, 187x165
Fig. 2 MALDI-MSI data from the same mouse lung tissue analyzed in Fig. 1. A: Optical image of the post-MSI, H&E-stained tissue section. B–D, F–G: Ion images of (B) m/z 796.6855 ([U13C-DPPC+Na]+), (C) m/z 756.5514 ([PC32:0+Na]+), (D) m/z 765.6079 ([D9-PC32:0+Na]+), (F) m/z 754.5359 ([PC32:1+Na]+), and (G) m/z 763.5923 ([D9-PC32:1+Na]+). E, H: Ratio images of (E) [D9-PC32:0+Na]+:[PC32:0+Na]+ and (H) [D9-PC32:1+Na]+:[PC32:1+Na]+. Part-per-million (ppm) mass errors are indicated in parentheses. All images were visualized using total-ion-current normalization and using hotspot removal (high quantile = 99%). DPPC = PC16:0/16:0. U13C-DPPC, universally 13C-labeled dipalmitoyl PC; PC, phosphatidylcholine; MSI, mass spectrometry imaging; H&E, hematoxylin and eosin.
Fig 1-3, Fig S1-S3, S5 |
|
623.5043 | [M+H-H2O]+PPM:1.5 |
Mus musculus | Left upper arm | MALDI (CHCA) |
357_l_total ion count - Limb defect imaging - Monash UniversityResolution: 50μm, 97x131
Diseased |
|
623.5008 | [M+H-H2O]+PPM:4.1 |
Mus musculus | Lung | MALDI (DHB) |
image2 - MTBLS2075Resolution: 40μm, 550x256
Supplementary Figure S6. Ion distribution images for (a) [PC36:4+Na]+ (m/z 804.5514) and (b)
[PC38:6+Na]+ (m/z 828.5515) obtained from mouse lung tissue collected 6 h after administration of D9-
choline and U13C-DPPC–containing CHF5633. Parts-per-million (ppm) mass errors are indicated in
parentheses. (c) Magnification of the boxed region in (a) with selected bronchiolar regions outlined in
white boxes. (d) The corresponding H&E-stained tissue section with the same selected bronchiolar
regions outlined in black boxes. These data demonstrate the co-localisation of the polyunsaturated lipids
PC36:4 and PC38:6 with the bronchiolar regions of the lung. All MSI images were visualised using
total ion current normalisation and hotspot removal (high quantile = 99%). |
|
641.5164 | [M+H]+PPM:3.9 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_3 - MTBLS385Resolution: 75μm, 121x68
|
|
679.6093 | [M+K]+PPM:7.2 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_3 - MTBLS385Resolution: 75μm, 121x68
|
|
605.4905 | [M+H-2H2O]+PPM:3.8 |
Mus musculus | Liver | MALDI (CHCA) |
Salmonella_final_pos_recal - MTBLS2671Resolution: 17μm, 691x430
A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium.
[dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671. |
|
623.5007 | [M+H-H2O]+PPM:4.3 |
Mus musculus | Liver | MALDI (CHCA) |
Salmonella_final_pos_recal - MTBLS2671Resolution: 17μm, 691x430
A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium.
[dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671. |
|
641.5107 | [M+H]+PPM:5 |
Mus musculus | Liver | MALDI (CHCA) |
Salmonella_final_pos_recal - MTBLS2671Resolution: 17μm, 691x430
A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium.
[dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671. |
|
658.5429 | [M+NH4]+PPM:3.7 |
Mus musculus | Liver | MALDI (CHCA) |
Salmonella_final_pos_recal - MTBLS2671Resolution: 17μm, 691x430
A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium.
[dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671. |
|
679.5977 | [M+K]+PPM:9.9 |
Mus musculus | Liver | MALDI (CHCA) |
Salmonella_final_pos_recal - MTBLS2671Resolution: 17μm, 691x430
A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium.
[dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671. |
|
623.5039 | [M+H-H2O]+PPM:0.9 |
Mytilus edulis | mantle | MALDI (DHB) |
20190201_MS38_Crassostrea_Mantle_350-1500_DHB_pos_A28_10um_270x210 - MTBLS2960Resolution: 10μm, 270x210
|
|
641.5021 | [M+H]+PPM:18.4 |
Mytilus edulis | mantle | MALDI (DHB) |
20190201_MS38_Crassostrea_Mantle_350-1500_DHB_pos_A28_10um_270x210 - MTBLS2960Resolution: 10μm, 270x210
|
|
641.5015 | [M+H]+PPM:19.4 |
Mytilus edulis | gill | MALDI (DHB) |
20190202_MS38_Crassostrea_Gill_350-1500_DHB_pos_A25_11um_305x210 - MTBLS2960Resolution: 11μm, 305x210
single cell layer |
|
623.5033 | [M+H-H2O]+PPM:0.1 |
Mytilus edulis | mantle | MALDI (DHB) |
20190216_MS38_Mytilus_mantle_350-1500_DHB_pos_A26_10um_275x210 - MTBLS2960Resolution: 10μm, 275x210
|
|
641.5016 | [M+H]+PPM:19.2 |
Mytilus edulis | mantle | MALDI (DHB) |
20190216_MS38_Mytilus_mantle_350-1500_DHB_pos_A26_10um_275x210 - MTBLS2960Resolution: 10μm, 275x210
|
|
623.5034 | [M+H-H2O]+PPM:0.1 |
Mus musculus | brain | MALDI (DHB) |
Brain01_Bregma-3-88b_centroid - MTBLS313Resolution: 17μm, 265x320
|
|
623.5035 | [M+H-H2O]+PPM:0.2 |
Mus musculus | brain | MALDI (DHB) |
Brain01_Bregma1-42_02_centroid - MTBLS313Resolution: 17μm, 434x258
|
|
623.5036 | [M+H-H2O]+PPM:0.4 |
Mus musculus | brain | MALDI (DHB) |
Brain01_Bregma1-42_01_centroid - MTBLS313Resolution: 17μm, 447x118
|
|
623.5029 | [M+H-H2O]+PPM:0.7 |
Mus musculus | brain | MALDI (DHB) |
Brain02_Bregma1-42_03 - MTBLS313Resolution: 17μm, 483x403
|
|
623.5029 | [M+H-H2O]+PPM:0.7 |
Mus musculus | brain | MALDI (DHB) |
Brain02_Bregma-3-88 - MTBLS313Resolution: 17μm, 288x282
|
|
623.5029 | [M+H-H2O]+PPM:0.7 |
Mus musculus | brain | MALDI (DHB) |
Brain02_Bregma-1-46 - MTBLS313Resolution: 17μm, 294x399
|
|
DG(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)/0:0), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. The linoleic acid moiety is derived from seed oils, while the arachidonic acid moiety is derived from animal fats and eggs. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections. Synthesis of diacylglycerol begins with glycerol-3-phosphate, which is derived primarily from dihydroxyacetone phosphate, a product of glycolysis (usually in the cytoplasm of liver or adipose tissue cells). Glycerol-3-phosphate is first acylated with acyl-coenzyme A (acyl-CoA) to form lysophosphatidic acid, which is then acylated with another molecule of acyl-CoA to yield phosphatidic acid. Phosphatidic acid is then de-phosphorylated to form diacylglycerol.Diacylglycerols are precursors to triacylglycerols (triglyceride), which are formed by the addition of a third fatty acid to the diacylglycerol under the catalysis of diglyceride acyltransferase. Since diacylglycerols are synthesized via phosphatidic acid, they will usually contain a saturated fatty acid at the C-1 position on the glycerol moiety and an unsaturated fatty acid at the C-2 position. DG(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)/0:0) is a diglyceride, or a diacylglycerol (DAG). It is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Diacylglycerols can have many different combinations of fatty acids attached at both the C-1 and C-2 positions. DG(18:2(9Z,12Z)/20:4(5Z,8Z,11Z,14Z)/0:0), in particular, consists of one chain of linoleic acid at the C-1 position and one chain of arachidonic acid at the C-2 position. The linoleic acid moiety is derived from seed oils, while the arachidonic acid moiety is derived from animal fats and eggs. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Dacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.