LysoPC(18:3(6Z,9Z,12Z)/0:0)
Formula: C26H48NO7P (517.3168)
Chinese Name: 1-亚麻酰-甘油-磷脂胆碱
BioDeep ID: BioDeep_00000019144
( View LC/MS Profile)
SMILES: CCCCC\C=C/C\C=C/C\C=C/CCCCC(=O)OC[C@](O)([H])COP([O-])(=O)OCC[N+](C)(C)C
Found 25 Sample Hits
m/z | Adducts | Species | Organ | Scanning | Sample | |
---|---|---|---|---|---|---|
518.3265 | [M+H]+PPM:4.6 |
Mus musculus | Urinary bladder | MALDI (CHCA) |
HR2MSI_mouse_urinary_bladder - S096 - PXD001283Resolution: 10μm, 260x134
Mass spectrometry imaging of phospholipids in mouse urinary bladder (imzML dataset) |
|
500.3125 | [M+H-H2O]+PPM:2.1 |
Bathymodiolus | epithelial host cells | MALDI (DHB) |
MPIBremen_Bputeoserpentis_MALDI-FISH_DHB_233x233pixel_3um_mz400-1200_240k@200 - MTBLS744Resolution: 3μm, 233x233
The Bathymodiolus puteoserpentis specimen used for high resolution AP-MALDI-MSI was collected during the RV Meteor M126 cruise in 2016 at the Logatchev hydrothermal vent field on the Mid-Atlantic Ridge. The specimen was retrieved with the MARUM-Quest remotely operated vehicle (ROV) at the Irina II vent site at 3038 m depth, 14°45’11.01”N and 44°58’43.98”W, and placed in an insulated container to prevent temperature changes during recovery. Gills were dissected from the mussel as soon as brought on board after ROV retrieval, submerged in precooled 2% w/v carboxymethyl cellulose gel (CMC, Mw ~ 700,000, Sigma-Aldrich Chemie GmbH) and snap-frozen in liquid N2. Samples were stored at -80 °C until use.
|
|
540.3062 | [M+Na]+PPM:0.3 |
Bathymodiolus | epithelial host cells | MALDI (DHB) |
MPIBremen_Bputeoserpentis_MALDI-FISH_DHB_233x233pixel_3um_mz400-1200_240k@200 - MTBLS744Resolution: 3μm, 233x233
The Bathymodiolus puteoserpentis specimen used for high resolution AP-MALDI-MSI was collected during the RV Meteor M126 cruise in 2016 at the Logatchev hydrothermal vent field on the Mid-Atlantic Ridge. The specimen was retrieved with the MARUM-Quest remotely operated vehicle (ROV) at the Irina II vent site at 3038 m depth, 14°45’11.01”N and 44°58’43.98”W, and placed in an insulated container to prevent temperature changes during recovery. Gills were dissected from the mussel as soon as brought on board after ROV retrieval, submerged in precooled 2% w/v carboxymethyl cellulose gel (CMC, Mw ~ 700,000, Sigma-Aldrich Chemie GmbH) and snap-frozen in liquid N2. Samples were stored at -80 °C until use.
|
|
500.3125 | [M+H-H2O]+PPM:2.1 |
Bathymodiolus | epithelial host cells | MALDI (DHB) |
MPIMM_054_QE_P_BP_CF_Bputeoserpentis_MALDI-FISH8_Sl16_s1_DHB_233x233_3um - MTBLS744Resolution: 3μm, 233x233
|
|
540.3062 | [M+Na]+PPM:0.3 |
Bathymodiolus | epithelial host cells | MALDI (DHB) |
MPIMM_054_QE_P_BP_CF_Bputeoserpentis_MALDI-FISH8_Sl16_s1_DHB_233x233_3um - MTBLS744Resolution: 3μm, 233x233
|
|
500.3121 | [M+H-H2O]+PPM:2.9 |
Bathymodiolus | epithelial host cells | MALDI (DHB) |
MPIMM_039_QE_P_BP_CF_Bputeoserpentis_MALDI-FISH8_Sl14_s1_DHB_233x233_3um - MTBLS744Resolution: 3μm, 233x234
|
|
518.3232 | [M+H]+PPM:1.7 |
Plant | Root | MALDI (DHB) |
MPIMM_035_QE_P_PO_6pm - MPIMM_035_QE_P_PO_6pmResolution: 30μm, 165x170
|
|
500.3108 | [M+H-H2O]+PPM:5.5 |
Homo sapiens | Liver | MALDI (DHB) |
20171107_FIT4_DHBpos_p70_s50 - Rappez et al (2021) SpaceM reveals metabolic states of single cellsResolution: 50μm, 70x70
|
|
500.3122 | [M+H-H2O]+PPM:2.7 |
Mus musculus | Left upper arm | MALDI (CHCA) |
357_l_total ion count - Limb defect imaging - Monash UniversityResolution: 50μm, 97x131
Diseased |
|
518.3229 | [M+H]+PPM:2.3 |
Mus musculus | Left upper arm | MALDI (CHCA) |
357_l_total ion count - Limb defect imaging - Monash UniversityResolution: 50μm, 97x131
Diseased |
|
500.3103 | [M+H-H2O]+PPM:6.5 |
Mus musculus | Lung | MALDI (DHB) |
image4 - MTBLS2075Resolution: 40μm, 162x156
Fig 6c
Fig. 6 MALDI-MSI of U13C-PC16:0/16:0 acyl chain remodeling. A: Averaged MALDI mass spectrum from lung tissue collected from mice euthanized 12 h after administration of D9-choline and U13C-DPPC–containing Poractant alfa surfactant. The ion at m/z 828.6321 is assigned as the [M+Na]+ ion of 13C24-PC16:0_20:4 formed by acyl remodeling of U13C-PC16:0/16:0. The “NL” value refers to the intensity of the base peak in the full range MS1 spectrum. B: MS/MS spectrum of precursor ions at m/z 828.5 ± 0.5 with fragment ions originating from [13C24-PC16:0_20:4+Na]+ annotated. Part-per-million (ppm) mass errors are provided in parentheses. C, D: MALDI-MSI data of [U13C-DPPC+Na]+ (blue), [PC36:4+Na]+ (green) and [13C24-PC16:0_20:4+Na]+ (red) in lung tissue collected from mice (C) 12 h and (D) 18 h after label administration. All images were visualized using total-ion-current normalization and hotspot removal (high quantile = 99%). MS/MS, tandem mass spectrometry; MSI, mass spectrometry imaging; PC, phosphatidylcholine; U13C-DPPC, universally 13C-labeled dipalmitoyl PC. |
|
500.323 | [M+H-H2O]+PPM:18.9 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_4 - MTBLS385Resolution: 17μm, 82x80
|
|
518.3331 | [M+H]+PPM:17.4 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_4 - MTBLS385Resolution: 17μm, 82x80
|
|
535.36 | [M+NH4]+PPM:17.5 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_4 - MTBLS385Resolution: 17μm, 82x80
|
|
500.322 | [M+H-H2O]+PPM:16.9 |
Mus musculus | Liver | MALDI (CHCA) |
Salmonella_final_pos_recal - MTBLS2671Resolution: 17μm, 691x430
A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium.
[dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671. |
|
556.4234 | [M+K]+PPM:15.9 |
Mus musculus | Liver | MALDI (CHCA) |
Salmonella_final_pos_recal - MTBLS2671Resolution: 17μm, 691x430
A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium.
[dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671. |
|
535.3564 | [M+NH4]+PPM:10.7 |
Mytilus edulis | gill | MALDI (DHB) |
20190202_MS38_Crassostrea_Gill_350-1500_DHB_pos_A25_11um_305x210 - MTBLS2960Resolution: 11μm, 305x210
single cell layer |
|
500.3112 | [M+H-H2O]+PPM:4.7 |
Mus musculus | brain | MALDI (DHB) |
Brain01_Bregma-3-88b_centroid - MTBLS313Resolution: 17μm, 265x320
|
|
500.3114 | [M+H-H2O]+PPM:4.3 |
Mus musculus | brain | MALDI (DHB) |
Brain01_Bregma1-42_02_centroid - MTBLS313Resolution: 17μm, 434x258
|
|
500.3115 | [M+H-H2O]+PPM:4.1 |
Mus musculus | brain | MALDI (DHB) |
Brain01_Bregma1-42_01_centroid - MTBLS313Resolution: 17μm, 447x118
|
|
500.3105 | [M+H-H2O]+PPM:6.1 |
Mus musculus | brain | MALDI (DHB) |
Brain02_Bregma1-42_03 - MTBLS313Resolution: 17μm, 483x403
|
|
500.3105 | [M+H-H2O]+PPM:6.1 |
Mus musculus | brain | MALDI (DHB) |
Brain02_Bregma-3-88 - MTBLS313Resolution: 17μm, 288x282
|
|
500.3105 | [M+H-H2O]+PPM:6.1 |
Mus musculus | brain | MALDI (DHB) |
Brain02_Bregma-1-46 - MTBLS313Resolution: 17μm, 294x399
|
|
500.3119 | [M+H-H2O]+PPM:3.3 |
Drosophila melanogaster | brain | MALDI (DHB) |
Drosophila18 - 2019-10-16_14h26m34sResolution: 5μm, 686x685
Sample information
Organism: Drosophila melanogaster
Organism part: Brain
Condition: Healthy
Sample preparation
Sample stabilisation: Frozen
Tissue modification: Frozen
MALDI matrix: 2,5-dihydroxybenzoic acid (DHB)
MALDI matrix application: TM sprayer
Solvent: Aceton/water
MS analysis
Polarity: Positive
Ionisation source: Prototype
Analyzer: Orbitrap
Pixel size: 5μm × 5μm
Annotation settings
m/z tolerance (ppm): 3
Analysis version: Original MSM
Pixel count: 469910
Imzml file size: 696.23 MB
Ibd file size: 814.11 MB |
|
540.3063 | [M+Na]+PPM:0.5 |
Drosophila melanogaster | brain | MALDI (DHB) |
Drosophila18 - 2019-10-16_14h26m34sResolution: 5μm, 686x685
Sample information
Organism: Drosophila melanogaster
Organism part: Brain
Condition: Healthy
Sample preparation
Sample stabilisation: Frozen
Tissue modification: Frozen
MALDI matrix: 2,5-dihydroxybenzoic acid (DHB)
MALDI matrix application: TM sprayer
Solvent: Aceton/water
MS analysis
Polarity: Positive
Ionisation source: Prototype
Analyzer: Orbitrap
Pixel size: 5μm × 5μm
Annotation settings
m/z tolerance (ppm): 3
Analysis version: Original MSM
Pixel count: 469910
Imzml file size: 696.23 MB
Ibd file size: 814.11 MB |
|
LysoPC(18:3(6Z,9Z,12Z)) is a lysophospholipid (LyP). It is a monoglycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. Lysophosphatidylcholines can have different combinations of fatty acids of varying lengths and saturation attached at the C-1 (sn-1) position. Fatty acids containing 16, 18 and 20 carbons are the most common. LysoPC(18:3(6Z,9Z,12Z)), in particular, consists of one chain of g-linolenic acid at the C-1 position. The g-linolenic acid moiety is derived from animal fats. Lysophosphatidylcholine is found in small amounts in most tissues. It is formed by hydrolysis of phosphatidylcholine by the enzyme phospholipase A2, as part of the de-acylation/re-acylation cycle that controls its overall molecular species composition. It can also be formed inadvertently during extraction of lipids from tissues if the phospholipase is activated by careless handling. In blood plasma significant amounts of lysophosphatidylcholine are formed by a specific enzyme system, lecithin:cholesterol acyltransferase (LCAT), which is secreted from the liver. The enzyme catalyzes the transfer of the fatty acids of position sn-2 of phosphatidylcholine to the free cholesterol in plasma, with formation of cholesterol esters and lysophosphatidylcholine. Lysophospholipids have a role in lipid signaling by acting on lysophospholipid receptors (LPL-R). LPL-Rs are members of the G protein-coupled receptor family of integral membrane proteins. [HMDB] LysoPC(18:3(6Z,9Z,12Z)) is a lysophospholipid (LyP). It is a monoglycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. Lysophosphatidylcholines can have different combinations of fatty acids of varying lengths and saturation attached at the C-1 (sn-1) position. Fatty acids containing 16, 18 and 20 carbons are the most common. LysoPC(18:3(6Z,9Z,12Z)), in particular, consists of one chain of g-linolenic acid at the C-1 position. The g-linolenic acid moiety is derived from animal fats. Lysophosphatidylcholine is found in small amounts in most tissues. It is formed by hydrolysis of phosphatidylcholine by the enzyme phospholipase A2, as part of the de-acylation/re-acylation cycle that controls its overall molecular species composition. It can also be formed inadvertently during extraction of lipids from tissues if the phospholipase is activated by careless handling. In blood plasma significant amounts of lysophosphatidylcholine are formed by a specific enzyme system, lecithin:cholesterol acyltransferase (LCAT), which is secreted from the liver. The enzyme catalyzes the transfer of the fatty acids of position sn-2 of phosphatidylcholine to the free cholesterol in plasma, with formation of cholesterol esters and lysophosphatidylcholine. Lysophospholipids have a role in lipid signaling by acting on lysophospholipid receptors (LPL-R). LPL-Rs are members of the G protein-coupled receptor family of integral membrane proteins.