Acetyl-L-carnitine
Formula: C9H17NO4 (203.1158)
Chinese Name: 乙酰-L-肉碱, L-乙酰基肉碱, 乙酰左旋肉碱
BioDeep ID: BioDeep_00000018395
( View LC/MS Profile)
SMILES: [H][C@@](CC([O-])=O)(C[N+](C)(C)C)OC(C)=O
Found 37 Sample Hits
m/z | Adducts | Species | Organ | Scanning | Sample | |
---|---|---|---|---|---|---|
186.1128 | [M+H-H2O]+PPM:1.8 |
Marker Pen | NA | DESI (None) |
3ul_0.8Mpa_RAW_20241016-PAPER PNMK - MEMI_testResolution: 30μm, 315x42
By writing the four English letters “PNMK” on white paper with a marker pen, and then scanning with a DESI ion source to obtain the scanning result. The signal of the chemical substances on the marker pen used appears on the channel with an m/z value of |
|
204.1233 | [M+H]+PPM:1.3 |
Marker Pen | NA | DESI (None) |
3ul_0.8Mpa_RAW_20241016-PAPER PNMK - MEMI_testResolution: 30μm, 315x42
By writing the four English letters “PNMK” on white paper with a marker pen, and then scanning with a DESI ion source to obtain the scanning result. The signal of the chemical substances on the marker pen used appears on the channel with an m/z value of |
|
221.1539 | [M+NH4]+PPM:19.5 |
Marker Pen | NA | DESI (None) |
3ul_0.8Mpa_RAW_20241016-PAPER PNMK - MEMI_testResolution: 30μm, 315x42
By writing the four English letters “PNMK” on white paper with a marker pen, and then scanning with a DESI ion source to obtain the scanning result. The signal of the chemical substances on the marker pen used appears on the channel with an m/z value of |
|
242.2116 | [M+K]+PPM:7.9 |
Marker Pen | NA | DESI (None) |
3ul_0.8Mpa_RAW_20241016-PAPER PNMK - MEMI_testResolution: 30μm, 315x42
By writing the four English letters “PNMK” on white paper with a marker pen, and then scanning with a DESI ion source to obtain the scanning result. The signal of the chemical substances on the marker pen used appears on the channel with an m/z value of |
|
204.1229 | [M+H]+PPM:0.6 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito08_43 - MTBLS58Resolution: 17μm, 298x106
|
|
204.1229 | [M+H]+PPM:0.6 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito08_44 - MTBLS58Resolution: 17μm, 299x111
|
|
204.123 | [M+H]+PPM:0.1 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito08_46 - MTBLS58Resolution: 17μm, 298x106
|
|
204.123 | [M+H]+PPM:0.1 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito08_47 - MTBLS58Resolution: 17μm, 301x111
|
|
204.123 | [M+H]+PPM:0.1 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito08_48 - MTBLS58Resolution: 17μm, 294x107
|
|
204.1229 | [M+H]+PPM:0.6 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito03_14 - MTBLS58Resolution: 17μm, 205x103
|
|
221.1539 | [M+NH4]+PPM:19.5 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_4 - MTBLS385Resolution: 17μm, 82x80
|
|
186.1131 | [M+H-H2O]+PPM:3.4 |
Homo sapiens | esophagus | DESI () |
LNTO29_16_2 - MTBLS385Resolution: 17μm, 95x101
|
|
221.1534 | [M+NH4]+PPM:17.3 |
Homo sapiens | esophagus | DESI () |
LNTO29_16_2 - MTBLS385Resolution: 17μm, 95x101
|
|
204.1235 | [M+H]+PPM:2.3 |
Mus musculus | Liver | MALDI (CHCA) |
Salmonella_final_pos_recal - MTBLS2671Resolution: 17μm, 691x430
A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium.
[dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671. |
|
242.2117 | [M+K]+PPM:7.4 |
Mus musculus | Liver | MALDI (CHCA) |
Salmonella_final_pos_recal - MTBLS2671Resolution: 17μm, 691x430
A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium.
[dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671. |
|
186.1134 | [M+H-H2O]+PPM:5 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_9 - MTBLS385Resolution: 75μm, 89x74
|
|
221.1528 | [M+NH4]+PPM:14.6 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_9 - MTBLS385Resolution: 75μm, 89x74
|
|
221.1495 | [M+NH4]+PPM:0.4 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
80TopL, 50TopR, 70BottomL, 60BottomR-profile - MTBLS415Resolution: 17μm, 137x136
The human colorectal adenocarcinoma sample was excised during a surgical operation performed at the Imperial College Healthcare NHS Trust. The sample and procedures were carried out in accordance with ethical approval (14/EE/0024). |
|
221.1501 | [M+NH4]+PPM:2.4 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
520TopL, 490TopR, 510BottomL, 500BottomR-profile - MTBLS415Resolution: 17μm, 147x131
The human colorectal adenocarcinoma sample was excised during a surgical operation performed at the Imperial College Healthcare NHS Trust. The sample and procedures were carried out in accordance with ethical approval (14/EE/0024). |
|
186.1129 | [M+H-H2O]+PPM:2.3 |
Homo sapiens | esophagus | DESI () |
LNTO29_16_3 - MTBLS385Resolution: 17μm, 108x107
|
|
221.1531 | [M+NH4]+PPM:15.9 |
Homo sapiens | esophagus | DESI () |
LNTO29_16_3 - MTBLS385Resolution: 17μm, 108x107
|
|
186.1132 | [M+H-H2O]+PPM:4 |
Homo sapiens | esophagus | DESI () |
LNTO26_7_1 - MTBLS385Resolution: 17μm, 75x74
|
|
186.1134 | [M+H-H2O]+PPM:5 |
Homo sapiens | esophagus | DESI () |
LNTO26_7_2 - MTBLS385Resolution: 17μm, 135x101
|
|
186.1132 | [M+H-H2O]+PPM:4 |
Homo sapiens | esophagus | DESI () |
LNTO26_7_3 - MTBLS385Resolution: 75μm, 82x88
|
|
186.113 | [M+H-H2O]+PPM:2.9 |
Homo sapiens | esophagus | DESI () |
TO31T - MTBLS385Resolution: 75μm, 56x54
|
|
186.1133 | [M+H-H2O]+PPM:4.5 |
Homo sapiens | esophagus | DESI () |
TO29T - MTBLS385Resolution: 75μm, 56x48
|
|
221.1536 | [M+NH4]+PPM:18.2 |
Homo sapiens | esophagus | DESI () |
LNTO30_17_2 - MTBLS385Resolution: 75μm, 82x54
|
|
186.1133 | [M+H-H2O]+PPM:4.5 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_7 - MTBLS385Resolution: 75μm, 69x54
|
|
221.1526 | [M+NH4]+PPM:13.7 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_7 - MTBLS385Resolution: 75μm, 69x54
|
|
186.1133 | [M+H-H2O]+PPM:4.5 |
Homo sapiens | esophagus | DESI () |
LNTO26_16_1 - MTBLS385Resolution: 75μm, 95x88
|
|
186.1129 | [M+H-H2O]+PPM:2.3 |
Homo sapiens | esophagus | DESI () |
LNTO29_18_2 - MTBLS385Resolution: 75μm, 62x68
|
|
221.1538 | [M+NH4]+PPM:19.1 |
Homo sapiens | esophagus | DESI () |
LNTO29_18_2 - MTBLS385Resolution: 75μm, 62x68
|
|
204.123 | [M+H]+PPM:0.1 |
Mus musculus | brain | MALDI (DHB) |
Brain01_Bregma-3-88b_centroid - MTBLS313Resolution: 17μm, 265x320
|
|
204.1225 | [M+H]+PPM:2.6 |
Mus musculus | brain | MALDI (DHB) |
Brain02_Bregma1-42_03 - MTBLS313Resolution: 17μm, 483x403
|
|
204.1225 | [M+H]+PPM:2.6 |
Mus musculus | brain | MALDI (DHB) |
Brain02_Bregma-3-88 - MTBLS313Resolution: 17μm, 288x282
|
|
204.1225 | [M+H]+PPM:2.6 |
Mus musculus | brain | MALDI (DHB) |
Brain02_Bregma-1-46 - MTBLS313Resolution: 17μm, 294x399
|
|
221.1539 | [M+NH4]+PPM:19.5 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
240TopL, 210TopR, 230BottomL, 220BottomR-centroid - MTBLS176Resolution: 50μm, 142x141
|
|
L-Acetylcarnitine (Acetylcarnitine or ALC or LAC) is an acetic acid ester of carnitine that facilitates the movement of acetyl-CoA into the matrices of mammalian mitochondria during the oxidation of fatty acids. Acetylcarnitine is an endogenous compound widely distributed in many tissues, including brain. Chemically, acetylcarnitine is the acetylated derivative of the amino acid L-carnitine whose function is generally correlated with regulation of energy metabolism within mitochondria. The synthesis of acetylcarnitine is catalyzed by the enzyme carnitine acetyltransferase (CAT), which is located on the inner mitochondrial membrane as well as in endoplasmic reticulum and peroxisome. CAT promotes the transfer of an acetyl group from acetyl-Coenzyme A (acetyl-CoA) to carnitine, thereby producing acetylcarnitine and free CoA (PMID: 29267192). After being synthetized, acetylcarnitine is transported outside mitochondria into the cytosol by the enzyme carnitine/acetylcarnitine translocase (CACT). This is a crucial metabolic reaction for beta-oxidation of fatty acids whereby acetylcarnitine facilitates the transport of acetyl-CoA across mitochondrial membranes (PMID: 29267192). In addition to his metabolic role, L-acetylcarnitine possesses unique neuroprotective, neuromodulatory, and neurotrophic properties. acetylcarnitine is mobile throughout the plasma membranes and can rapidly cross blood-brain barrier. Indeed, acetylcarnitine can be transported by the high-affinity sodium-dependent organic cation/transporter (OCTN2), which is functionally expressed in cells forming the blood-brain barrier (PMID: 29267192). A wide range of mechanisms have been proposed to explain the multiplicity of acetylcarnitine activities within nervous tissues. In particular, it has been demonstrated that acetylcarnitine modulates the activity of nerve growth factor (NGF) and enhances the expression of NGF receptors in striatum/hippocampus during development (PMID: 29267192). Moreover, acetylcarnitine modulates different neurotransmitter systems, including the GABAergic, dopaminergic, and cholinergic system by increasing acetyl-CoA content and choline acetyltransferase (ChAT) activity. This may play an important role in counteracting various neurodegenerative disease processes (PMID: 15363640).