PG(18:3(6Z,9Z,12Z)/16:0)

[(2S)-2,3-dihydroxypropoxy][(2R)-2-(hexadecanoyloxy)-3-[(6Z,9Z,12Z)-octadeca-6,9,12-trienoyloxy]propoxy]phosphinic acid

Formula: C40H73O10P (744.4941)
Chinese Name:
BioDeep ID: BioDeep_00000031723 ( View LC/MS Profile)
SMILES: [H][C@](O)(CO)COP(O)(=O)OC[C@@]([H])(COC(=O)CCCC\C=C/C\C=C/C\C=C/CCCCC)OC(=O)CCCCCCCCCCCCCCC



Found 49 Sample Hits

m/z Adducts Species Organ Scanning Sample
745.4949 [M+H]+
PPM:8.7
Mus musculus Lung MALDI (DHB)
image1 - MTBLS2075
Resolution: 40μm, 187x165

Description

Fig. 2 MALDI-MSI data from the same mouse lung tissue analyzed in Fig. 1. A: Optical image of the post-MSI, H&E-stained tissue section. B–D, F–G: Ion images of (B) m/z 796.6855 ([U13C-DPPC+Na]+), (C) m/z 756.5514 ([PC32:0+Na]+), (D) m/z 765.6079 ([D9-PC32:0+Na]+), (F) m/z 754.5359 ([PC32:1+Na]+), and (G) m/z 763.5923 ([D9-PC32:1+Na]+). E, H: Ratio images of (E) [D9-PC32:0+Na]+:[PC32:0+Na]+ and (H) [D9-PC32:1+Na]+:[PC32:1+Na]+. Part-per-million (ppm) mass errors are indicated in parentheses. All images were visualized using total-ion-current normalization and using hotspot removal (high quantile = 99%). DPPC = PC16:0/16:0. U13C-DPPC, universally 13C-labeled dipalmitoyl PC; PC, phosphatidylcholine; MSI, mass spectrometry imaging; H&E, hematoxylin and eosin. Fig 1-3, Fig S1-S3, S5

745.4983 [M+H]+
PPM:4.1
Mus musculus Left upper arm MALDI (CHCA)
357_l_total ion count - Limb defect imaging - Monash University
Resolution: 50μm, 97x131

Description

Diseased

745.4999 [M+H]+
PPM:2
Mus musculus Lung MALDI (DHB)
image3 - MTBLS2075
Resolution: 40μm, 146x190

Description

Fig. 4 MALDI-MSI data of mouse lung tissue after administration with D9-choline and U13C-DPPC–containing Poractant alfa surfactant (labels administered 12 h prior to tissue collection). Ion images of (A) m/z 796.6856 ([U13C-DPPC+Na]+), (B) m/z 756.5154 [PC32:0+Na]+), and (C) m/z 765.6079 ([D9-PC32:0+Na]+). D: Overlay image of [U13C-PC32:0+Na]+ (red) and [D9-PC32:0+Na]+ (green). Part-per-million (ppm) mass errors are indicated in parentheses. All images were visualized using total-ion-current normalization and using hotspot removal (high quantile = 99%). DPPC = PC16:0/16:0. MSI, mass spectrometry imaging; PC, phosphatidylcholine; U13C-DPPC, universally 13C-labeled dipalmitoyl PC.

745.4956 [M+H]+
PPM:7.8
Mus musculus Lung MALDI (DHB)
image4 - MTBLS2075
Resolution: 40μm, 162x156

Description

Fig 6c Fig. 6 MALDI-MSI of U13C-PC16:0/16:0 acyl chain remodeling. A: Averaged MALDI mass spectrum from lung tissue collected from mice euthanized 12 h after administration of D9-choline and U13C-DPPC–containing Poractant alfa surfactant. The ion at m/z 828.6321 is assigned as the [M+Na]+ ion of 13C24-PC16:0_20:4 formed by acyl remodeling of U13C-PC16:0/16:0. The “NL” value refers to the intensity of the base peak in the full range MS1 spectrum. B: MS/MS spectrum of precursor ions at m/z 828.5 ± 0.5 with fragment ions originating from [13C24-PC16:0_20:4+Na]+ annotated. Part-per-million (ppm) mass errors are provided in parentheses. C, D: MALDI-MSI data of [U13C-DPPC+Na]+ (blue), [PC36:4+Na]+ (green) and [13C24-PC16:0_20:4+Na]+ (red) in lung tissue collected from mice (C) 12 h and (D) 18 h after label administration. All images were visualized using total-ion-current normalization and hotspot removal (high quantile = 99%). MS/MS, tandem mass spectrometry; MSI, mass spectrometry imaging; PC, phosphatidylcholine; U13C-DPPC, universally 13C-labeled dipalmitoyl PC.

745.501 [M+H]+
PPM:0.5
Mus musculus Lung MALDI (DHB)
image5 - MTBLS2075
Resolution: 40μm, 163x183

Description

Supplementary Figure S8. MALDI-MSI data of mouse lung tissue administered with D9-choline and U 13C-DPPC–containing Poractant alfa surfactant (labels administered 18 h prior to sacrifice). Ion images of (a) m/z 796.6856 ([U13C-DPPC+Na]+), (b) m/z 756.5154 [PC32:0+Na]+ and (c) m/z 765.6079 ([D9-PC32:0+Na]+). (d) Overlay image of [U13C-DPPC+Na]+ (red) and [D9-PC32:0+Na]+ (green). Parts per million (ppm) mass errors are indicated in parentheses. All images were visualised using totalion-current normalisation and using hotspot removal (high quantile = 99%). DPPC = PC16:0/16:0.

745.5017 [M+H]+
PPM:0.4
Mus musculus Lung MALDI (DHB)
image2 - MTBLS2075
Resolution: 40μm, 550x256

Description

Supplementary Figure S6. Ion distribution images for (a) [PC36:4+Na]+ (m/z 804.5514) and (b) [PC38:6+Na]+ (m/z 828.5515) obtained from mouse lung tissue collected 6 h after administration of D9- choline and U13C-DPPC–containing CHF5633. Parts-per-million (ppm) mass errors are indicated in parentheses. (c) Magnification of the boxed region in (a) with selected bronchiolar regions outlined in white boxes. (d) The corresponding H&E-stained tissue section with the same selected bronchiolar regions outlined in black boxes. These data demonstrate the co-localisation of the polyunsaturated lipids PC36:4 and PC38:6 with the bronchiolar regions of the lung. All MSI images were visualised using total ion current normalisation and hotspot removal (high quantile = 99%).

745.5027 [M+H]+
PPM:1.8
Macropus giganteus Brain MALDI (BPYN)
170321_kangaroobrain-dan3-pos_maxof50.0_med1 - 170321_kangaroobrain-dan3-pos_maxof50.0_med1
Resolution: 50μm, 81x50

Description

Sample information Organism: Macropus giganteus (kangaroo) Organism part: Brain Condition: Wildtype Sample growth conditions: Wild

745.504 [M+H]+
PPM:3.5
Homo sapiens esophagus DESI ()
LNTO22_1_3 - MTBLS385
Resolution: 75μm, 121x68

Description

745.5007 [M+H]+
PPM:0.9
Homo sapiens esophagus DESI ()
LNTO22_1_4 - MTBLS385
Resolution: 17μm, 82x80

Description

745.4973 [M+H]+
PPM:5.5
Rattus norvegicus Brain MALDI (CHCA)
2018June2820180628_brain_POS_3s2_validated - MTBLS3154
Resolution: 17μm, 213x141

Description

All MSI experiments were performed on a hybrid linear ion trap 21 T FT-ICR mass spectrometer at the National High Magnetic Field Laboratory (NHMFL) at Florida State University (Tallahassee, FL). A Velos Pro linear ion trap (Thermo Scientific, San Jose, CA) was combined with NHMFL-designed external linear quadrupole ion trap, quadrupole ion transfer optics and a novel dynamically harmonized ICR cell, which is operated at 7.5 V trapping potential[1]. Briefly, the cell uses 120° cell segments for ion excitation and detection, for improved excitation electric field, detection sensitivity and reduced third harmonic signals[2][3]. The commercial ion source and stacked ring ion guide were replaced with an elevated-pressure MALDI ion source incorporating a dual-ion funnel interface (Spectroglyph LLC, Kennewick, WA) as has been described previously[4]. Voltages within the funnels were 625 kHz, 150 V peak-to-peak (first, high-pressure ion funnel) and 1.2 MHz, 90 V peak-to-peak (second, low-pressure ion funnel). An electric field gradient of ∼10 V/cm was maintained within the dual-funnel system, with a gradient of 100 V/cm between the sample and the funnel inlet. The system was equipped with a Q-switched, frequency-tripled Nd:YLF laser emitting 349 nm light (Explorer One, Spectra Physics, Mountain View, CA). The laser was operated at a repetition rate of 1 kHz and pulse energy of ∼1.2 μJ. Pressure within the ion source was set to 10 mbar in the first ion funnel and 2 mbar in the second ion funnel. MALDI stage motion was synchronized with ion accumulation using the Velos trigger signal indicating commencement of the ion trap injection event, as previously described[4]. The mass spectrometer was operated with an ion injection time of 250 ms and automatic gain control (AGC) was turned off. A transient duration of 3.1 s was used for ultrahigh mass resolving power analyses, resulting in a total time of 4s per pixel. Spectra were obtained in both positive and negative mode, at 100 μm spatial resolution. Total number of pixels per brain section were approximately 22 000 and 24 h of experimental time. A Predator data station was used for ion excitation and detection[5]. Refs: [1] Hendrickson CL, Quinn JP, Kaiser NK, Smith DF, Blakney GT, Chen T, Marshall AG, Weisbrod CR, Beu SC. 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer: A National Resource for Ultrahigh Resolution Mass Analysis. J Am Soc Mass Spectrom. 2015 Sep;26(9):1626-32. doi:10.1007/s13361-015-1182-2. Epub 2015 Jun 20. PMID:26091892. [2] Hendrickson CL, Beu SC, Blakney GT, Kaiser NK, McIntosh DG, Quinn JP, Marshall AG. In Optimized cell geometry for Fourier transform ion cyclotron resonance mass spectrometry, Proceedings of the 57th ASMS Conference on Mass Spectrometry and Allied Topics, Philadelphia, PA, May 31 to June 4; Philadelphia, PA, 2009. [3] Chen T, Beu SC, Kaiser NK, Hendrickson CL. Note: Optimized circuit for excitation and detection with one pair of electrodes for improved Fourier transform ion cyclotron resonance mass spectrometry. Rev Sci Instrum. 2014 Jun;85(6):066107. doi:10.1063/1.4883179. PMID:24985871. [4] Belov ME, Ellis SR, Dilillo M, Paine MRL, Danielson WF, Anderson GA, de Graaf EL, Eijkel GB, Heeren RMA, McDonnell LA. Design and Performance of a Novel Interface for Combined Matrix-Assisted Laser Desorption Ionization at Elevated Pressure and Electrospray Ionization with Orbitrap Mass Spectrometry. Anal Chem. 2017 Jul 18;89(14):7493-7501. doi:10.1021/acs.analchem.7b01168. Epub 2017 Jun 28. PMID:28613836. [5] Blakney GT, Hendrickson CL, Marshall AG. Predator data station: A fast data acquisition system for advanced FT-ICR MS experiments. Int. J. Mass Spectrom. 2011;306 (2-3), 246- 252. doi:10.1016/j.ijms.2011.03.009.

745.503 [M+H]+
PPM:2.2
Homo sapiens esophagus DESI ()
LNTO29_16_2 - MTBLS385
Resolution: 17μm, 95x101

Description

745.5019 [M+H]+
PPM:0.7
Homo sapiens esophagus DESI ()
TO42T - MTBLS385
Resolution: 17μm, 69x81

Description

745.505 [M+H]+
PPM:4.8
Homo sapiens esophagus DESI ()
LNTO22_1_9 - MTBLS385
Resolution: 75μm, 89x74

Description

745.4967 [M+H]+
PPM:6.3
Mus musculus Liver MALDI (CHCA)
Salmonella_final_pos_recal - MTBLS2671
Resolution: 17μm, 691x430

Description

A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium. [dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671.

745.5029 [M+H]+
PPM:2
Homo sapiens esophagus DESI ()
LNTO30_8M_1 - MTBLS385
Resolution: 17μm, 69x54

Description

745.5043 [M+H]+
PPM:3.9
Homo sapiens colorectal adenocarcinoma DESI ()
80TopL, 50TopR, 70BottomL, 60BottomR-profile - MTBLS415
Resolution: 17μm, 137x136

Description

The human colorectal adenocarcinoma sample was excised during a surgical operation performed at the Imperial College Healthcare NHS Trust. The sample and procedures were carried out in accordance with ethical approval (14/EE/0024).

745.5011 [M+H]+
PPM:0.4
Homo sapiens colorectal adenocarcinoma DESI ()
520TopL, 490TopR, 510BottomL, 500BottomR-profile - MTBLS415
Resolution: 17μm, 147x131

Description

The human colorectal adenocarcinoma sample was excised during a surgical operation performed at the Imperial College Healthcare NHS Trust. The sample and procedures were carried out in accordance with ethical approval (14/EE/0024).

745.5005 [M+H]+
PPM:1.2
Homo sapiens colorectal adenocarcinoma DESI ()
439TopL, 409TopR, 429BottomL, 419BottomR-profile - MTBLS415
Resolution: 17μm, 157x136

Description

The human colorectal adenocarcinoma sample was excised during a surgical operation performed at the Imperial College Healthcare NHS Trust. The sample and procedures were carried out in accordance with ethical approval (14/EE/0024).

745.4994 [M+H]+
PPM:2.7
Homo sapiens NA DESI ()
160TopL,130TopR,150BottomL,140BottomR-profile - MTBLS415
Resolution: 17μm, 142x136

Description

745.5025 [M+H]+
PPM:1.5
Homo sapiens esophagus DESI ()
LNTO29_16_3 - MTBLS385
Resolution: 17μm, 108x107

Description

745.5043 [M+H]+
PPM:3.9
Homo sapiens esophagus DESI ()
LNTO26_7_1 - MTBLS385
Resolution: 17μm, 75x74

Description

745.5049 [M+H]+
PPM:4.7
Homo sapiens esophagus DESI ()
LNTO26_7_2 - MTBLS385
Resolution: 17μm, 135x101

Description

745.5039 [M+H]+
PPM:3.4
Homo sapiens esophagus DESI ()
LNTO26_7_3 - MTBLS385
Resolution: 75μm, 82x88

Description

745.5039 [M+H]+
PPM:3.4
Homo sapiens esophagus DESI ()
TO29T - MTBLS385
Resolution: 75μm, 56x48

Description

745.5028 [M+H]+
PPM:1.9
Homo sapiens esophagus DESI ()
TO41T - MTBLS385
Resolution: 75μm, 69x43

Description

745.5031 [M+H]+
PPM:2.3
Homo sapiens esophagus DESI ()
LNTO30_8M_2 - MTBLS385
Resolution: 75μm, 108x68

Description

745.503 [M+H]+
PPM:2.2
Homo sapiens esophagus DESI ()
LNTO30_8M_3 - MTBLS385
Resolution: 75μm, 69x54

Description

745.5028 [M+H]+
PPM:1.9
Homo sapiens esophagus DESI ()
LNTO30_8M_5 - MTBLS385
Resolution: 75μm, 56x54

Description

745.5032 [M+H]+
PPM:2.4
Homo sapiens esophagus DESI ()
LNTO30_17_2 - MTBLS385
Resolution: 75μm, 82x54

Description

745.5044 [M+H]+
PPM:4
Homo sapiens esophagus DESI ()
LNTO22_1_5 - MTBLS385
Resolution: 75μm, 135x94

Description

745.5041 [M+H]+
PPM:3.6
Homo sapiens esophagus DESI ()
LNTO22_1_7 - MTBLS385
Resolution: 75μm, 69x54

Description

745.5039 [M+H]+
PPM:3.4
Homo sapiens esophagus DESI ()
LNTO22_1_8 - MTBLS385
Resolution: 75μm, 69x61

Description

745.5039 [M+H]+
PPM:3.4
Homo sapiens esophagus DESI ()
LNTO22_2_1 - MTBLS385
Resolution: 75μm, 89x88

Description

745.5044 [M+H]+
PPM:4
Homo sapiens esophagus DESI ()
LNTO22_2_2 - MTBLS385
Resolution: 75μm, 135x94

Description

745.5041 [M+H]+
PPM:3.6
Homo sapiens esophagus DESI ()
LNTO26_16_1 - MTBLS385
Resolution: 75μm, 95x88

Description

745.5026 [M+H]+
PPM:1.6
Homo sapiens esophagus DESI ()
LNTO29_18_2 - MTBLS385
Resolution: 75μm, 62x68

Description

745.5031 [M+H]+
PPM:2.3
Homo sapiens esophagus DESI ()
LNTO30_7_1 - MTBLS385
Resolution: 75μm, 69x68

Description

745.5031 [M+H]+
PPM:2.3
Homo sapiens esophagus DESI ()
LNTO30_7_2 - MTBLS385
Resolution: 75μm, 82x68

Description

745.4977 [M+H]+
PPM:4.9
Mus musculus brain MALDI (DHB)
Brain01_Bregma-3-88b_centroid - MTBLS313
Resolution: 17μm, 265x320

Description

745.4983 [M+H]+
PPM:4.1
Mus musculus brain MALDI (DHB)
Brain01_Bregma1-42_02_centroid - MTBLS313
Resolution: 17μm, 434x258

Description

745.4982 [M+H]+
PPM:4.3
Mus musculus brain MALDI (DHB)
Brain01_Bregma1-42_01_centroid - MTBLS313
Resolution: 17μm, 447x118

Description

745.4973 [M+H]+
PPM:5.5
Mus musculus brain MALDI (DHB)
Brain02_Bregma1-42_03 - MTBLS313
Resolution: 17μm, 483x403

Description

783.5811 [M+K]+
PPM:13.7
Mus musculus brain MALDI (DHB)
Brain02_Bregma1-42_03 - MTBLS313
Resolution: 17μm, 483x403

Description

745.4972 [M+H]+
PPM:5.6
Mus musculus brain MALDI (DHB)
Brain02_Bregma-3-88 - MTBLS313
Resolution: 17μm, 288x282

Description

745.4973 [M+H]+
PPM:5.5
Mus musculus brain MALDI (DHB)
Brain02_Bregma-1-46 - MTBLS313
Resolution: 17μm, 294x399

Description

745.5028 [M+H]+
PPM:1.9
Homo sapiens colorectal adenocarcinoma DESI ()
240TopL, 210TopR, 230BottomL, 220BottomR-centroid - MTBLS176
Resolution: 50μm, 142x141

Description

745.5033 [M+H]+
PPM:2.6
Homo sapiens colorectal adenocarcinoma DESI ()
200TopL, 170TopR, 190BottomL, 180BottomR-centroid - MTBLS176
Resolution: 50μm, 132x126

Description

745.5025 [M+H]+
PPM:1.5
Homo sapiens colorectal adenocarcinoma DESI ()
160TopL,130TopR,150BottomL,140BottomR-centroid - MTBLS176
Resolution: 50μm, 142x136

Description

745.503 [M+H]+
PPM:2.2
Homo sapiens colorectal adenocarcinoma DESI ()
120TopL, 90TopR, 110BottomL, 100BottomR-centroid - MTBLS176
Resolution: 50μm, 132x136

Description


PG(18:3(6Z,9Z,12Z)/16:0) is a phosphatidylglycerol or glycerophospholipid (PG or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(18:3(6Z,9Z,12Z)/16:0), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of palmitic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the palmitic acid moiety is derived from fish oils, milk fats, vegetable oils and animal fats. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PGs have a net charge of -1 at physiological pH and are found in high concentration in mitochondrial membranes and as components of pulmonary surfactant. PG also serves as a precursor for the synthesis of cardiolipin. PG is synthesized from CDP-diacylglycerol and glycerol-3-phosphate. PG(18:3(6Z,9Z,12Z)/16:0) is a phosphatidylglycerol. Phosphatidylglycerols consist of a glycerol 3-phosphate backbone esterified to either saturated or unsaturated fatty acids on carbons 1 and 2. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PG(18:3(6Z,9Z,12Z)/16:0), in particular, consists of one 6Z,9Z,12Z-octadecatrienoyl chain to the C-1 atom, and one hexadecanoyl to the C-2 atom. In E. coli glycerophospholipid metabolism, phosphatidylglycerol is formed from phosphatidic acid (1,2-diacyl-sn-glycerol 3-phosphate) by a sequence of enzymatic reactions that proceeds via two intermediates, cytidine diphosphate diacylglycerol (CDP-diacylglycerol) and phosphatidylglycerophosphate (PGP, a phosphorylated phosphatidylglycerol). Phosphatidylglycerols, along with CDP-diacylglycerol, also serve as precursor molecules for the synthesis of cardiolipin, a phospholipid found in membranes.