25-Hydroxyvitamin D2-25-glucuronide

(2S,3S,4S,5R,6S)-6-{[(3S,4E,6R)-6-[(1R,4E,7aR)-4-{2-[(1Z)-5-hydroxy-2-methylidenecyclohexylidene]ethylidene}-7a-methyl-hexahydro-1H-inden-1-yl]-2,3-dimethylhept-4-en-2-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

Formula: C34H52O8 (588.3662)
Chinese Name:
BioDeep ID: BioDeep_00000031454 ( View LC/MS Profile)
SMILES: [H]C(=C[C@@](C)([H])C(C)(C)O[C@]1([H])O[C@]([H])(C(O)=O)[C@](O)([H])[C@@](O)([H])[C@]1(O)[H])[C@](C)([H])[C@@]1([H])CCC2C(CCC[C@]12C)=C\C=C1\CC(O)CCC1=C



Found 17 Sample Hits

m/z Adducts Species Organ Scanning Sample
553.3485 [M+H-2H2O]+
PPM:6.9
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito03_18 - MTBLS58
Resolution: 17μm, 208x104

Description

553.3485 [M+H-2H2O]+
PPM:6.9
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_44 - MTBLS58
Resolution: 17μm, 299x111

Description

553.3484 [M+H-2H2O]+
PPM:7.1
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_46 - MTBLS58
Resolution: 17μm, 298x106

Description

553.3484 [M+H-2H2O]+
PPM:7.1
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_47 - MTBLS58
Resolution: 17μm, 301x111

Description

553.3485 [M+H-2H2O]+
PPM:6.9
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_48 - MTBLS58
Resolution: 17μm, 294x107

Description

553.3485 [M+H-2H2O]+
PPM:6.9
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito01_04 - MTBLS58
Resolution: 17μm, 178x91

Description

553.3485 [M+H-2H2O]+
PPM:6.9
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito01_03 - MTBLS58
Resolution: 17μm, 159x110

Description

553.3485 [M+H-2H2O]+
PPM:6.9
Rattus norvegicus normal MALDI (DHB)
epik_dhb_head_ito01_05 - MTBLS58
Resolution: 17μm, 183x105

Description

553.3485 [M+H-2H2O]+
PPM:6.9
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito03_14 - MTBLS58
Resolution: 17μm, 205x103

Description

588.387 [M-H2O+NH4]+
PPM:4.2
Homo sapiens esophagus DESI ()
LNTO22_1_4 - MTBLS385
Resolution: 17μm, 82x80

Description

589.3703 [M+H]+
PPM:5.4
Homo sapiens esophagus DESI ()
LNTO22_1_4 - MTBLS385
Resolution: 17μm, 82x80

Description

606.3972 [M+NH4]+
PPM:4.7
Homo sapiens esophagus DESI ()
LNTO22_1_4 - MTBLS385
Resolution: 17μm, 82x80

Description

553.3495 [M+H-2H2O]+
PPM:5.1
Mus musculus Liver MALDI (CHCA)
Salmonella_final_pos_recal - MTBLS2671
Resolution: 17μm, 691x430

Description

A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium. [dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671.

589.3706 [M+H]+
PPM:4.9
Mus musculus Liver MALDI (CHCA)
Salmonella_final_pos_recal - MTBLS2671
Resolution: 17μm, 691x430

Description

A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium. [dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671.

606.4059 [M+NH4]+
PPM:9.7
Mus musculus Liver MALDI (CHCA)
Salmonella_final_pos_recal - MTBLS2671
Resolution: 17μm, 691x430

Description

A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium. [dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671.

589.367 [M+H]+
PPM:11
Mytilus edulis gill MALDI (DHB)
20190202_MS38_Crassostrea_Gill_350-1500_DHB_pos_A25_11um_305x210 - MTBLS2960
Resolution: 11μm, 305x210

Description

single cell layer class_4 is the gill structure cells, metabolite ion 534.2956 is the top representive ion of this type of cell

589.3772 [M+H]+
PPM:6.3
Homo sapiens colorectal adenocarcinoma DESI ()
520TopL, 490TopR, 510BottomL, 500BottomR-profile - MTBLS415
Resolution: 17μm, 147x131

Description

The human colorectal adenocarcinoma sample was excised during a surgical operation performed at the Imperial College Healthcare NHS Trust. The sample and procedures were carried out in accordance with ethical approval (14/EE/0024).


25-hydroxyvitamin D2-25-glucuronide is a natural human metabolite of 25-hydroxyvitamin generated in the liver by UDP glucuonyltransferase. Glucuronidation is used to assist in the excretion of toxic substances, drugs or other substances that cannot be used as an energy source. Glucuronic acid is attached via a glycosidic bond to the substance, and the resulting glucuronide, which has a much higher water solubility than the original substance, is eventually excreted by the kidneys. [HMDB] 25-hydroxyvitamin D2-25-glucuronide is a natural human metabolite of 25-hydroxyvitamin generated in the liver by UDP glucuonyltransferase. Glucuronidation is used to assist in the excretion of toxic substances, drugs or other substances that cannot be used as an energy source. Glucuronic acid is attached via a glycosidic bond to the substance, and the resulting glucuronide, which has a much higher water solubility than the original substance, is eventually excreted by the kidneys. D018977 - Micronutrients > D014815 - Vitamins > D004872 - Ergocalciferols