LysoPC(18:4(6Z,9Z,12Z,15Z)/0:0)
Formula: C26H46NO7P (515.3012)
Chinese Name:
BioDeep ID: BioDeep_00000031482
( View LC/MS Profile)
SMILES: CC\C=C/C\C=C/C\C=C/C\C=C/CCCCC(=O)OC[C@](O)([H])COP([O-])(=O)OCC[N+](C)(C)C
Found 16 Sample Hits
m/z | Adducts | Species | Organ | Scanning | Sample | |
---|---|---|---|---|---|---|
516.3057 | [M+H]+PPM:5.3 |
Homo sapiens | Liver | MALDI (DHB) |
20171107_FIT4_DHBpos_p70_s50 - Rappez et al (2021) SpaceM reveals metabolic states of single cellsResolution: 50μm, 70x70
|
|
516.306 | [M+H]+PPM:4.7 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito03_18 - MTBLS58Resolution: 17μm, 208x104
|
|
533.3438 | [M+NH4]+PPM:16.5 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito08_44 - MTBLS58Resolution: 17μm, 299x111
|
|
516.306 | [M+H]+PPM:4.7 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito08_47 - MTBLS58Resolution: 17μm, 301x111
|
|
533.3439 | [M+NH4]+PPM:16.7 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito08_47 - MTBLS58Resolution: 17μm, 301x111
|
|
516.306 | [M+H]+PPM:4.7 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito01_03 - MTBLS58Resolution: 17μm, 159x110
|
|
516.306 | [M+H]+PPM:4.7 |
Rattus norvegicus | normal | MALDI (DHB) |
epik_dhb_head_ito01_05 - MTBLS58Resolution: 17μm, 183x105
|
|
516.3076 | [M+H]+PPM:1.6 |
Mus musculus | Left upper arm | MALDI (CHCA) |
357_l_total ion count - Limb defect imaging - Monash UniversityResolution: 50μm, 97x131
Diseased |
|
516.305 | [M+H]+PPM:6.7 |
Mus musculus | Lung | MALDI (DHB) |
image3 - MTBLS2075Resolution: 40μm, 146x190
Fig. 4 MALDI-MSI data of mouse lung tissue after administration with D9-choline and U13C-DPPC–containing Poractant alfa surfactant (labels administered 12 h prior to tissue collection). Ion images of (A) m/z 796.6856 ([U13C-DPPC+Na]+), (B) m/z 756.5154 [PC32:0+Na]+), and (C) m/z 765.6079 ([D9-PC32:0+Na]+). D: Overlay image of [U13C-PC32:0+Na]+ (red) and [D9-PC32:0+Na]+ (green). Part-per-million (ppm) mass errors are indicated in parentheses. All images were visualized using total-ion-current normalization and using hotspot removal (high quantile = 99%). DPPC = PC16:0/16:0. MSI, mass spectrometry imaging; PC, phosphatidylcholine; U13C-DPPC, universally 13C-labeled dipalmitoyl PC. |
|
516.3057 | [M+H]+PPM:5.3 |
Mus musculus | Lung | MALDI (DHB) |
image5 - MTBLS2075Resolution: 40μm, 163x183
Supplementary Figure S8. MALDI-MSI data of mouse lung tissue administered with D9-choline and
U 13C-DPPC–containing Poractant alfa surfactant (labels administered 18 h prior to sacrifice). Ion
images of (a) m/z 796.6856 ([U13C-DPPC+Na]+), (b) m/z 756.5154 [PC32:0+Na]+ and (c) m/z 765.6079
([D9-PC32:0+Na]+). (d) Overlay image of [U13C-DPPC+Na]+ (red) and [D9-PC32:0+Na]+ (green).
Parts per million (ppm) mass errors are indicated in parentheses. All images were visualised using totalion-current normalisation and using hotspot removal (high quantile = 99%). DPPC = PC16:0/16:0. |
|
516.3059 | [M+H]+PPM:4.9 |
Mus musculus | Lung | MALDI (DHB) |
image2 - MTBLS2075Resolution: 40μm, 550x256
Supplementary Figure S6. Ion distribution images for (a) [PC36:4+Na]+ (m/z 804.5514) and (b)
[PC38:6+Na]+ (m/z 828.5515) obtained from mouse lung tissue collected 6 h after administration of D9-
choline and U13C-DPPC–containing CHF5633. Parts-per-million (ppm) mass errors are indicated in
parentheses. (c) Magnification of the boxed region in (a) with selected bronchiolar regions outlined in
white boxes. (d) The corresponding H&E-stained tissue section with the same selected bronchiolar
regions outlined in black boxes. These data demonstrate the co-localisation of the polyunsaturated lipids
PC36:4 and PC38:6 with the bronchiolar regions of the lung. All MSI images were visualised using
total ion current normalisation and hotspot removal (high quantile = 99%). |
|
516.3174 | [M+H]+PPM:17.3 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_4 - MTBLS385Resolution: 17μm, 82x80
|
|
533.3442 | [M+NH4]+PPM:17.3 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_4 - MTBLS385Resolution: 17μm, 82x80
|
|
515.334 | [M-H2O+NH4]+PPM:18.6 |
Mus musculus | Liver | MALDI (CHCA) |
Salmonella_final_pos_recal - MTBLS2671Resolution: 17μm, 691x430
A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium.
[dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671. |
|
533.3447 | [M+NH4]+PPM:18.2 |
Mus musculus | Liver | MALDI (CHCA) |
Salmonella_final_pos_recal - MTBLS2671Resolution: 17μm, 691x430
A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium.
[dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671. |
|
516.3065 | [M+H]+PPM:3.8 |
Drosophila melanogaster | brain | MALDI (DHB) |
Drosophila18 - 2019-10-16_14h26m34sResolution: 5μm, 686x685
Sample information
Organism: Drosophila melanogaster
Organism part: Brain
Condition: Healthy
Sample preparation
Sample stabilisation: Frozen
Tissue modification: Frozen
MALDI matrix: 2,5-dihydroxybenzoic acid (DHB)
MALDI matrix application: TM sprayer
Solvent: Aceton/water
MS analysis
Polarity: Positive
Ionisation source: Prototype
Analyzer: Orbitrap
Pixel size: 5μm × 5μm
Annotation settings
m/z tolerance (ppm): 3
Analysis version: Original MSM
Pixel count: 469910
Imzml file size: 696.23 MB
Ibd file size: 814.11 MB |
|
LysoPC(18:4(6Z,9Z,12Z,15Z)) is a lysophospholipid (LyP). It is a monoglycerophospholipid in which a phosphorylcholine moiety occupies a glycerol substitution site. Lysophosphatidylcholines can have different combinations of fatty acids of varying lengths and saturation attached at the C-1 (sn-1) position. Fatty acids containing 16, 18 and 20 carbons are the most common. LysoPC(18:4(6Z,9Z,12Z,15Z)), in particular, consists of one chain of stearidonic acid at the C-1 position. The stearidonic acid moiety is derived from seed oils. Lysophosphatidylcholine is found in small amounts in most tissues. It is formed by hydrolysis of phosphatidylcholine by the enzyme phospholipase A2, as part of the de-acylation/re-acylation cycle that controls its overall molecular species composition. It can also be formed inadvertently during extraction of lipids from tissues if the phospholipase is activated by careless handling. In blood plasma significant amounts of lysophosphatidylcholine are formed by a specific enzyme system, lecithin:cholesterol acyltransferase (LCAT), which is secreted from the liver. The enzyme catalyzes the transfer of the fatty acids of position sn-2 of phosphatidylcholine to the free cholesterol in plasma, with formation of cholesterol esters and lysophosphatidylcholine. Lysophospholipids have a role in lipid signaling by acting on lysophospholipid receptors (LPL-R). LPL-Rs are members of the G protein-coupled receptor family of integral membrane proteins.