PE(22:5(4Z,7Z,10Z,13Z,16Z)/24:1(15Z))

(2-aminoethoxy)[(2R)-3-[(4Z,7Z,10Z,13Z,16Z)-docosa-4,7,10,13,16-pentaenoyloxy]-2-[(15Z)-tetracos-15-enoyloxy]propoxy]phosphinic acid

Formula: C51H90NO8P (875.6404)
Chinese Name:
BioDeep ID: BioDeep_00000030846 ( View LC/MS Profile)
SMILES: [H][C@@](COC(=O)CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CCCCC)(COP(O)(=O)OCCN)OC(=O)CCCCCCCCCCCCC\C=C/CCCCCCCC



Found 13 Sample Hits

m/z Adducts Species Organ Scanning Sample
840.6366 [M+H-2H2O]+
PPM:12
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito03_17 - MTBLS58
Resolution: 17μm, 208x108

Description

1 male adult wild-type rat was obtained from Inserm U1085 - Irset Research Institute (University of Rennes1, France). Animals were age 60 days and were reared under ad-lib conditions. Care and handling of all animals complied with EU directive 2010/63/EU on the protection of animals used for scientific purposes. The whole epididymis was excised from each animal immediately post-mortem, loosely wrapped rapidly in an aluminum foil and a 2.5% (w/v) carboxymethylcellulose (CMC) solution was poured to embed the epididymis to preserve their morphology. To remove air bubbles, the filled aluminum molds was gently freezed by depositing it on isopentane or dry ice, then on the nitrogen vapors and finally by progressively dipping the CMC/sample coated with aluminum foil into liquid nitrogen (or only flush with liquid nitrogen). Frozen tissues were stored at -80 °C until use to avoid degradation.

893.6873 [M+NH4]+
PPM:14.7
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito03_17 - MTBLS58
Resolution: 17μm, 208x108

Description

1 male adult wild-type rat was obtained from Inserm U1085 - Irset Research Institute (University of Rennes1, France). Animals were age 60 days and were reared under ad-lib conditions. Care and handling of all animals complied with EU directive 2010/63/EU on the protection of animals used for scientific purposes. The whole epididymis was excised from each animal immediately post-mortem, loosely wrapped rapidly in an aluminum foil and a 2.5% (w/v) carboxymethylcellulose (CMC) solution was poured to embed the epididymis to preserve their morphology. To remove air bubbles, the filled aluminum molds was gently freezed by depositing it on isopentane or dry ice, then on the nitrogen vapors and finally by progressively dipping the CMC/sample coated with aluminum foil into liquid nitrogen (or only flush with liquid nitrogen). Frozen tissues were stored at -80 °C until use to avoid degradation.

893.6872 [M+NH4]+
PPM:14.6
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito03_18 - MTBLS58
Resolution: 17μm, 208x104

Description

840.6364 [M+H-2H2O]+
PPM:11.8
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_43 - MTBLS58
Resolution: 17μm, 298x106

Description

893.687 [M+NH4]+
PPM:14.3
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_43 - MTBLS58
Resolution: 17μm, 298x106

Description

840.6361 [M+H-2H2O]+
PPM:11.4
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_46 - MTBLS58
Resolution: 17μm, 298x106

Description

893.6865 [M+NH4]+
PPM:13.8
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_46 - MTBLS58
Resolution: 17μm, 298x106

Description

893.6866 [M+NH4]+
PPM:13.9
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito01_04 - MTBLS58
Resolution: 17μm, 178x91

Description

914.7336 [M+K]+
PPM:4.9
Homo sapiens esophagus DESI ()
LNTO22_1_8 - MTBLS385
Resolution: 75μm, 69x61

Description

840.623 [M+H-2H2O]+
PPM:4.2
Mus musculus brain MALDI (DHB)
Brain01_Bregma1-42_01_centroid - MTBLS313
Resolution: 17μm, 447x118

Description

840.6237 [M+H-2H2O]+
PPM:3.4
Mus musculus brain MALDI (DHB)
Brain02_Bregma1-42_03 - MTBLS313
Resolution: 17μm, 483x403

Description

840.6235 [M+H-2H2O]+
PPM:3.6
Mus musculus brain MALDI (DHB)
Brain02_Bregma-3-88 - MTBLS313
Resolution: 17μm, 288x282

Description

840.6236 [M+H-2H2O]+
PPM:3.5
Mus musculus brain MALDI (DHB)
Brain02_Bregma-1-46 - MTBLS313
Resolution: 17μm, 294x399

Description


PE(22:5(4Z,7Z,10Z,13Z,16Z)/24:1(15Z)) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(22:5(4Z,7Z,10Z,13Z,16Z)/24:1(15Z)), in particular, consists of one chain of docosapentaenoic acid at the C-1 position and one chain of nervonic acid at the C-2 position. The docosapentaenoic acid moiety is derived from animal fats and brain, while the nervonic acid moiety is derived from fish oils. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.