Retinoyl b-glucuronide

1-O-[(2E,4E,6E,8E)-3,7-dimethyl-9-(2,6,6-trimethylcyclohex-1-en-1-yl)nona-2,4,6,8-tetraenoyl]-β-D-glucopyranuronic acid O(15)-[(2S,3R,4S,5S,6S)-6-carboxy-3,4,5-trihydroxytetrahydro-2H-pyran-2-yl]retinoic acid

Formula: C26H36O8 (476.241)
Chinese Name:
BioDeep ID: BioDeep_00000004296 ( View LC/MS Profile)
SMILES: C1CCC(C)=C(/C=C/C(=C/C=C/C(=C/C(=O)O[C@H]2[C@H](O)[C@@H](O)[C@H](O)[C@@H](C(=O)O)O2)/C)/C)C1(C)C



Found 7 Sample Hits

m/z Adducts Species Organ Scanning Sample
476.2614 [M-H2O+NH4]+
PPM:6
Homo sapiens esophagus DESI ()
LNTO22_1_4 - MTBLS385
Resolution: 17μm, 82x80

Description

477.2459 [M+H]+
PPM:5
Homo sapiens esophagus DESI ()
LNTO22_1_4 - MTBLS385
Resolution: 17μm, 82x80

Description

441.2249 [M+H-2H2O]+
PPM:5.1
Mus musculus Liver MALDI (CHCA)
Salmonella_final_pos_recal - MTBLS2671
Resolution: 17μm, 691x430

Description

A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium. [dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671.

477.2457 [M+H]+
PPM:5.4
Mus musculus Liver MALDI (CHCA)
Salmonella_final_pos_recal - MTBLS2671
Resolution: 17μm, 691x430

Description

A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium. [dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671.

494.2839 [M+NH4]+
PPM:18.3
Mytilus edulis gill MALDI (DHB)
20190202_MS38_Crassostrea_Gill_350-1500_DHB_pos_A25_11um_305x210 - MTBLS2960
Resolution: 11μm, 305x210

Description

single cell layer class_4 is the gill structure cells, metabolite ion 534.2956 is the top representive ion of this type of cell

477.2433 [M+H]+
PPM:10.4
Mytilus edulis mantle MALDI (DHB)
20190216_MS38_Mytilus_mantle_350-1500_DHB_pos_A26_10um_275x210 - MTBLS2960
Resolution: 10μm, 275x210

Description

459.2286 [M+H-H2O]+
PPM:19.9
Drosophila melanogaster brain MALDI (DHB)
Drosophila18 - 2019-10-16_14h26m34s
Resolution: 5μm, 686x685

Description

Sample information Organism: Drosophila melanogaster Organism part: Brain Condition: Healthy Sample preparation Sample stabilisation: Frozen Tissue modification: Frozen MALDI matrix: 2,5-dihydroxybenzoic acid (DHB) MALDI matrix application: TM sprayer Solvent: Aceton/water MS analysis Polarity: Positive Ionisation source: Prototype Analyzer: Orbitrap Pixel size: 5μm × 5μm Annotation settings m/z tolerance (ppm): 3 Analysis version: Original MSM Pixel count: 469910 Imzml file size: 696.23 MB Ibd file size: 814.11 MB


Retinoyl beta-glucuronide is a naturally occurring, biologically active metabolite of vitamin A. Although retinoyl beta-glucuronide is regarded as a detoxification product of retinoic acid, it plays several roles in the functions of vitamin A. It can serve as a source of retinoic acid, and it may be a vehicle for transport of retinoic acid to target tissues. Topically applied retinoyl beta-glucuronide is comparable in efficacy to retinoic acid in the treatment of acne in humans, without the same side effects. Retinoyl beta-glucuronide may or may not be teratogenic, depending on the mode of administration and the species in which it is used. It may be a valuable therapeutic compound for the treatment of skin disorders and certain types of cancers. [HMDB] Retinoyl beta-glucuronide is a naturally occurring, biologically active metabolite of vitamin A. Although retinoyl beta-glucuronide is regarded as a detoxification product of retinoic acid, it plays several roles in the functions of vitamin A. It can serve as a source of retinoic acid, and it may be a vehicle for transport of retinoic acid to target tissues. Topically applied retinoyl beta-glucuronide is comparable in efficacy to retinoic acid in the treatment of acne in humans, without the same side effects. Retinoyl beta-glucuronide may or may not be teratogenic, depending on the mode of administration and the species in which it is used. It may be a valuable therapeutic compound for the treatment of skin disorders and certain types of cancers. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids