Taurolithocholate
Formula: C26H45NO5S (483.3018)
Chinese Name: 牛磺石胆酸
BioDeep ID: BioDeep_00000003426
( View LC/MS Profile)
SMILES: [C@@]12([H])CC[C@]([H])([C@H](C)CCC(=O)NCCS(=O)(=O)O)[C@@]1(C)CC[C@]1([H])[C@@]3(C)CC[C@@H](O)C[C@@]3([H])CC[C@@]21[H]
Found 46 Sample Hits
m/z | Adducts | Species | Organ | Scanning | Sample | |
---|---|---|---|---|---|---|
506.2895 | [M+Na]+PPM:3.1 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_3 - MTBLS385Resolution: 75μm, 121x68
|
|
448.2917 | [M+H-2H2O]+PPM:8.3 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_4 - MTBLS385Resolution: 17μm, 82x80
|
|
466.3019 | [M+H-H2O]+PPM:7.2 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_4 - MTBLS385Resolution: 17μm, 82x80
|
|
483.292 | [M]+PPM:19.2 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_4 - MTBLS385Resolution: 17μm, 82x80
|
|
483.3286 | [M-H2O+NH4]+PPM:7.3 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_4 - MTBLS385Resolution: 17μm, 82x80
|
|
506.2967 | [M+Na]+PPM:11.2 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_4 - MTBLS385Resolution: 17μm, 82x80
|
|
506.2889 | [M+Na]+PPM:4.2 |
Homo sapiens | esophagus | DESI () |
LNTO29_16_2 - MTBLS385Resolution: 17μm, 95x101
|
|
501.339 | [M+NH4]+PPM:6.7 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_9 - MTBLS385Resolution: 75μm, 89x74
|
|
506.2901 | [M+Na]+PPM:1.9 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_9 - MTBLS385Resolution: 75μm, 89x74
|
|
448.2901 | [M+H-2H2O]+PPM:4.7 |
Mus musculus | Liver | MALDI (CHCA) |
Salmonella_final_pos_recal - MTBLS2671Resolution: 17μm, 691x430
A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium.
[dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671. |
|
466.3012 | [M+H-H2O]+PPM:5.7 |
Mus musculus | Liver | MALDI (CHCA) |
Salmonella_final_pos_recal - MTBLS2671Resolution: 17μm, 691x430
A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium.
[dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671. |
|
483.3249 | [M-H2O+NH4]+PPM:0.4 |
Mus musculus | Liver | MALDI (CHCA) |
Salmonella_final_pos_recal - MTBLS2671Resolution: 17μm, 691x430
A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium.
[dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671. |
|
501.3339 | [M+NH4]+PPM:3.5 |
Mus musculus | Liver | MALDI (CHCA) |
Salmonella_final_pos_recal - MTBLS2671Resolution: 17μm, 691x430
A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium.
[dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671. |
|
522.3985 | [M+K]+PPM:2.1 |
Mus musculus | Liver | MALDI (CHCA) |
Salmonella_final_pos_recal - MTBLS2671Resolution: 17μm, 691x430
A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium.
[dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671. |
|
466.3056 | [M+H-H2O]+PPM:15.1 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
80TopL, 50TopR, 70BottomL, 60BottomR-profile - MTBLS415Resolution: 17μm, 137x136
The human colorectal adenocarcinoma sample was excised during a surgical operation performed at the Imperial College Healthcare NHS Trust. The sample and procedures were carried out in accordance with ethical approval (14/EE/0024). |
|
506.2895 | [M+Na]+PPM:3.1 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
80TopL, 50TopR, 70BottomL, 60BottomR-profile - MTBLS415Resolution: 17μm, 137x136
The human colorectal adenocarcinoma sample was excised during a surgical operation performed at the Imperial College Healthcare NHS Trust. The sample and procedures were carried out in accordance with ethical approval (14/EE/0024). |
|
483.3274 | [M-H2O+NH4]+PPM:4.8 |
Mytilus edulis | gill | MALDI (DHB) |
20190202_MS38_Crassostrea_Gill_350-1500_DHB_pos_A25_11um_305x210 - MTBLS2960Resolution: 11μm, 305x210
single cell layer |
|
506.3008 | [M+Na]+PPM:19.3 |
Mytilus edulis | gill | MALDI (DHB) |
20190202_MS38_Crassostrea_Gill_350-1500_DHB_pos_A25_11um_305x210 - MTBLS2960Resolution: 11μm, 305x210
single cell layer |
|
466.301 | [M+H-H2O]+PPM:5.3 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
520TopL, 490TopR, 510BottomL, 500BottomR-profile - MTBLS415Resolution: 17μm, 147x131
The human colorectal adenocarcinoma sample was excised during a surgical operation performed at the Imperial College Healthcare NHS Trust. The sample and procedures were carried out in accordance with ethical approval (14/EE/0024). |
|
506.2934 | [M+Na]+PPM:4.6 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
520TopL, 490TopR, 510BottomL, 500BottomR-profile - MTBLS415Resolution: 17μm, 147x131
The human colorectal adenocarcinoma sample was excised during a surgical operation performed at the Imperial College Healthcare NHS Trust. The sample and procedures were carried out in accordance with ethical approval (14/EE/0024). |
|
466.3012 | [M+H-H2O]+PPM:5.7 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
439TopL, 409TopR, 429BottomL, 419BottomR-profile - MTBLS415Resolution: 17μm, 157x136
The human colorectal adenocarcinoma sample was excised during a surgical operation performed at the Imperial College Healthcare NHS Trust. The sample and procedures were carried out in accordance with ethical approval (14/EE/0024). |
|
506.2917 | [M+Na]+PPM:1.3 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
439TopL, 409TopR, 429BottomL, 419BottomR-profile - MTBLS415Resolution: 17μm, 157x136
The human colorectal adenocarcinoma sample was excised during a surgical operation performed at the Imperial College Healthcare NHS Trust. The sample and procedures were carried out in accordance with ethical approval (14/EE/0024). |
|
466.298 | [M+H-H2O]+PPM:13.2 |
Homo sapiens | NA | DESI () |
160TopL,130TopR,150BottomL,140BottomR-profile - MTBLS415Resolution: 17μm, 142x136
|
|
506.2923 | [M+Na]+PPM:2.5 |
Homo sapiens | NA | DESI () |
160TopL,130TopR,150BottomL,140BottomR-profile - MTBLS415Resolution: 17μm, 142x136
|
|
506.2886 | [M+Na]+PPM:4.8 |
Homo sapiens | esophagus | DESI () |
LNTO29_16_3 - MTBLS385Resolution: 17μm, 108x107
|
|
506.2896 | [M+Na]+PPM:2.9 |
Homo sapiens | esophagus | DESI () |
LNTO26_7_1 - MTBLS385Resolution: 17μm, 75x74
|
|
506.2901 | [M+Na]+PPM:1.9 |
Homo sapiens | esophagus | DESI () |
LNTO26_7_2 - MTBLS385Resolution: 17μm, 135x101
|
|
506.2894 | [M+Na]+PPM:3.3 |
Homo sapiens | esophagus | DESI () |
LNTO26_7_3 - MTBLS385Resolution: 75μm, 82x88
|
|
506.2896 | [M+Na]+PPM:2.9 |
Homo sapiens | esophagus | DESI () |
TO31T - MTBLS385Resolution: 75μm, 56x54
|
|
506.2893 | [M+Na]+PPM:3.5 |
Homo sapiens | esophagus | DESI () |
TO29T - MTBLS385Resolution: 75μm, 56x48
|
|
506.2885 | [M+Na]+PPM:5 |
Homo sapiens | esophagus | DESI () |
TO41T - MTBLS385Resolution: 75μm, 69x43
|
|
506.2889 | [M+Na]+PPM:4.2 |
Homo sapiens | esophagus | DESI () |
LNTO30_8M_5 - MTBLS385Resolution: 75μm, 56x54
|
|
506.2899 | [M+Na]+PPM:2.3 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_5 - MTBLS385Resolution: 75μm, 135x94
|
|
501.3385 | [M+NH4]+PPM:5.7 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_7 - MTBLS385Resolution: 75μm, 69x54
|
|
506.2897 | [M+Na]+PPM:2.7 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_7 - MTBLS385Resolution: 75μm, 69x54
|
|
506.2895 | [M+Na]+PPM:3.1 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_8 - MTBLS385Resolution: 75μm, 69x61
|
|
506.2894 | [M+Na]+PPM:3.3 |
Homo sapiens | esophagus | DESI () |
LNTO22_2_1 - MTBLS385Resolution: 75μm, 89x88
|
|
506.29 | [M+Na]+PPM:2.1 |
Homo sapiens | esophagus | DESI () |
LNTO22_2_2 - MTBLS385Resolution: 75μm, 135x94
|
|
506.2895 | [M+Na]+PPM:3.1 |
Homo sapiens | esophagus | DESI () |
LNTO26_16_1 - MTBLS385Resolution: 75μm, 95x88
|
|
506.2884 | [M+Na]+PPM:5.2 |
Homo sapiens | esophagus | DESI () |
LNTO29_18_2 - MTBLS385Resolution: 75μm, 62x68
|
|
506.2889 | [M+Na]+PPM:4.2 |
Homo sapiens | esophagus | DESI () |
LNTO30_7_2 - MTBLS385Resolution: 75μm, 82x68
|
|
506.2884 | [M+Na]+PPM:5.2 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
240TopL, 210TopR, 230BottomL, 220BottomR-centroid - MTBLS176Resolution: 50μm, 142x141
|
|
506.289 | [M+Na]+PPM:4 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
200TopL, 170TopR, 190BottomL, 180BottomR-centroid - MTBLS176Resolution: 50μm, 132x126
|
|
506.2883 | [M+Na]+PPM:5.4 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
160TopL,130TopR,150BottomL,140BottomR-centroid - MTBLS176Resolution: 50μm, 142x136
|
|
506.289 | [M+Na]+PPM:4 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
120TopL, 90TopR, 110BottomL, 100BottomR-centroid - MTBLS176Resolution: 50μm, 132x136
|
|
483.3275 | [M-H2O+NH4]+PPM:5 |
Drosophila melanogaster | brain | MALDI (DHB) |
Drosophila18 - 2019-10-16_14h26m34sResolution: 5μm, 686x685
Sample information
Organism: Drosophila melanogaster
Organism part: Brain
Condition: Healthy
Sample preparation
Sample stabilisation: Frozen
Tissue modification: Frozen
MALDI matrix: 2,5-dihydroxybenzoic acid (DHB)
MALDI matrix application: TM sprayer
Solvent: Aceton/water
MS analysis
Polarity: Positive
Ionisation source: Prototype
Analyzer: Orbitrap
Pixel size: 5μm × 5μm
Annotation settings
m/z tolerance (ppm): 3
Analysis version: Original MSM
Pixel count: 469910
Imzml file size: 696.23 MB
Ibd file size: 814.11 MB |
|
Lithocholyltaurine is a bile salt formed in the liver from lithocholic acid conjugation with taurine, usually as the sodium salt. It solubilizes fats for absorption and is itself absorbed. Lithocholic acid, a hydrophobic secondary bile acid, is well known to cause intrahepatic cholestasis. There have been extensive studies on the mechanisms of lithocholate-induced cholestasis in animals. Lithocholate diminishes both the bile acid-dependent and independent bile flow. In humans, elevated levels of lithocholic acid are found in patients with chronic cholestatic liver disease. Lithocholyltaurine impairs both the bile canalicular contractions and the canalicular bile secretion, possibly by acting directly on the canalicular membranes in lithocholyltaurine-induced cholestasis. Lithocholyltaurine induce acute cholestasis-associated with retrieval of the bile salt export pump. The bile salt export pump (BSEP) of hepatocyte secretes conjugated bile salts across the canalicular membrane in an ATP-dependent manner. Hepatic retention of bile acids may lead to liver injury by hepatocyte apoptosis and eventually deterioration of cholestatic liver diseases. One mechanism of induced apoptosis by lithocholyltaurine is the induction of transcriptional activity of AP-1 (activation protein-1). (PMID: 16981261, 15763547, 16332456, 18164257) [HMDB] Lithocholyltaurine is a bile salt formed in the liver from lithocholic acid conjugation with taurine, usually as the sodium salt. It solubilizes fats for absorption and is itself absorbed. Lithocholic acid, a hydrophobic secondary bile acid, is well known to cause intrahepatic cholestasis. There have been extensive studies on the mechanisms of lithocholate-induced cholestasis in animals. Lithocholate diminishes both the bile acid-dependent and independent bile flow. In humans, elevated levels of lithocholic acid are found in patients with chronic cholestatic liver disease. Lithocholyltaurine impairs both the bile canalicular contractions and the canalicular bile secretion, possibly by acting directly on the canalicular membranes in lithocholyltaurine-induced cholestasis. Lithocholyltaurine induce acute cholestasis-associated with retrieval of the bile salt export pump. The bile salt export pump (BSEP) of hepatocyte secretes conjugated bile salts across the canalicular membrane in an ATP-dependent manner. Hepatic retention of bile acids may lead to liver injury by hepatocyte apoptosis and eventually deterioration of cholestatic liver diseases. One mechanism of induced apoptosis by lithocholyltaurine is the induction of transcriptional activity of AP-1 (activation protein-1). (PMID: 16981261, 15763547, 16332456, 18164257). D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D005765 - Gastrointestinal Agents > D001647 - Bile Acids and Salts D005765 - Gastrointestinal Agents > D002793 - Cholic Acids D013501 - Surface-Active Agents > D003902 - Detergents CONFIDENCE standard compound; INTERNAL_ID 61