3,9,15-Tribenzyl-4,10,16-trimethyl-6,12,18-tri(propan-2-yl)-1,7,13-trioxa-4,10,16-triazacyclooctadecane-2,5,8,11,14,17-hexone

3,9,15-tribenzyl-4,10,16-trimethyl-6,12,18-tris(propan-2-yl)-1,7,13-trioxa-4,10,16-triazacyclooctadecane-2,5,8,11,14,17-hexone

Formula: C45H57N3O9 (783.4095)
Chinese Name: 白僵菌毒素
BioDeep ID: BioDeep_00000002630 ( View LC/MS Profile)
SMILES: O(C(C(C)C)4)C(C(N(C)C(=O)C(OC(C(N(C)C(=O)C(OC(C(N(C)C(=O)4)Cc(c3)cccc3)=O)C(C)C)Cc(c2)cccc2)=O)C(C)C)Cc(c1)cccc1)=O



Found 21 Sample Hits

m/z Adducts Species Organ Scanning Sample
801.4422 [M+NH4]+
PPM:1.4
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito03_17 - MTBLS58
Resolution: 17μm, 208x108

Description

1 male adult wild-type rat was obtained from Inserm U1085 - Irset Research Institute (University of Rennes1, France). Animals were age 60 days and were reared under ad-lib conditions. Care and handling of all animals complied with EU directive 2010/63/EU on the protection of animals used for scientific purposes. The whole epididymis was excised from each animal immediately post-mortem, loosely wrapped rapidly in an aluminum foil and a 2.5% (w/v) carboxymethylcellulose (CMC) solution was poured to embed the epididymis to preserve their morphology. To remove air bubbles, the filled aluminum molds was gently freezed by depositing it on isopentane or dry ice, then on the nitrogen vapors and finally by progressively dipping the CMC/sample coated with aluminum foil into liquid nitrogen (or only flush with liquid nitrogen). Frozen tissues were stored at -80 °C until use to avoid degradation.

801.4421 [M+NH4]+
PPM:1.5
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito03_18 - MTBLS58
Resolution: 17μm, 208x104

Description

801.4422 [M+NH4]+
PPM:1.4
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_43 - MTBLS58
Resolution: 17μm, 298x106

Description

801.4424 [M+NH4]+
PPM:1.1
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_44 - MTBLS58
Resolution: 17μm, 299x111

Description

801.4419 [M+NH4]+
PPM:1.7
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_46 - MTBLS58
Resolution: 17μm, 298x106

Description

801.4419 [M+NH4]+
PPM:1.7
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_47 - MTBLS58
Resolution: 17μm, 301x111

Description

801.4419 [M+NH4]+
PPM:1.7
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_48 - MTBLS58
Resolution: 17μm, 294x107

Description

801.4418 [M+NH4]+
PPM:1.9
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito01_04 - MTBLS58
Resolution: 17μm, 178x91

Description

801.4415 [M+NH4]+
PPM:2.2
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito01_03 - MTBLS58
Resolution: 17μm, 159x110

Description

801.4419 [M+NH4]+
PPM:1.7
Rattus norvegicus normal MALDI (DHB)
epik_dhb_head_ito01_05 - MTBLS58
Resolution: 17μm, 183x105

Description

801.4418 [M+NH4]+
PPM:1.9
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito01_06 - MTBLS58
Resolution: 17μm, 183x103

Description

801.4421 [M+NH4]+
PPM:1.5
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito03_14 - MTBLS58
Resolution: 17μm, 205x103

Description

783.4481 [M-H2O+NH4]+
PPM:19.6
Mus musculus Lung MALDI (DHB)
image1 - MTBLS2075
Resolution: 40μm, 187x165

Description

Fig. 2 MALDI-MSI data from the same mouse lung tissue analyzed in Fig. 1. A: Optical image of the post-MSI, H&E-stained tissue section. B–D, F–G: Ion images of (B) m/z 796.6855 ([U13C-DPPC+Na]+), (C) m/z 756.5514 ([PC32:0+Na]+), (D) m/z 765.6079 ([D9-PC32:0+Na]+), (F) m/z 754.5359 ([PC32:1+Na]+), and (G) m/z 763.5923 ([D9-PC32:1+Na]+). E, H: Ratio images of (E) [D9-PC32:0+Na]+:[PC32:0+Na]+ and (H) [D9-PC32:1+Na]+:[PC32:1+Na]+. Part-per-million (ppm) mass errors are indicated in parentheses. All images were visualized using total-ion-current normalization and using hotspot removal (high quantile = 99%). DPPC = PC16:0/16:0. U13C-DPPC, universally 13C-labeled dipalmitoyl PC; PC, phosphatidylcholine; MSI, mass spectrometry imaging; H&E, hematoxylin and eosin. Fig 1-3, Fig S1-S3, S5

783.4366 [M-H2O+NH4]+
PPM:5
Mus musculus Left upper arm MALDI (CHCA)
357_l_total ion count - Limb defect imaging - Monash University
Resolution: 50μm, 97x131

Description

Diseased

801.4444 [M+NH4]+
PPM:1.4
Mus musculus Left upper arm MALDI (CHCA)
357_l_total ion count - Limb defect imaging - Monash University
Resolution: 50μm, 97x131

Description

Diseased

806.3968 [M+Na]+
PPM:2.3
Mus musculus Left upper arm MALDI (CHCA)
357_l_total ion count - Limb defect imaging - Monash University
Resolution: 50μm, 97x131

Description

Diseased

783.4411 [M-H2O+NH4]+
PPM:10.7
Mus musculus Liver MALDI (CHCA)
Salmonella_final_pos_recal - MTBLS2671
Resolution: 17μm, 691x430

Description

A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium. [dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671.

784.415 [M+H]+
PPM:2.2
Mus musculus Liver MALDI (CHCA)
Salmonella_final_pos_recal - MTBLS2671
Resolution: 17μm, 691x430

Description

A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium. [dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671.

784.4027 [M+H]+
PPM:17.9
Mytilus edulis gill MALDI (DHB)
20190202_MS38_Crassostrea_Gill_350-1500_DHB_pos_A25_11um_305x210 - MTBLS2960
Resolution: 11μm, 305x210

Description

single cell layer class_4 is the gill structure cells, metabolite ion 534.2956 is the top representive ion of this type of cell

801.4371 [M+NH4]+
PPM:7.7
Mytilus edulis gill MALDI (DHB)
20190202_MS38_Crassostrea_Gill_350-1500_DHB_pos_A25_11um_305x210 - MTBLS2960
Resolution: 11μm, 305x210

Description

single cell layer class_4 is the gill structure cells, metabolite ion 534.2956 is the top representive ion of this type of cell

783.4358 [M-H2O+NH4]+
PPM:3.9
Mytilus edulis mantle MALDI (DHB)
20190216_MS38_Mytilus_mantle_350-1500_DHB_pos_A26_10um_275x210 - MTBLS2960
Resolution: 10μm, 275x210

Description


[Raw Data] CBA19_Beauvericin_pos_20eV_1-1_01_1374.txt [Raw Data] CBA19_Beauvericin_pos_50eV_1-1_01_1485.txt [Raw Data] CBA19_Beauvericin_pos_10eV_1-1_01_1352.txt [Raw Data] CBA19_Beauvericin_pos_40eV_1-1_01_1376.txt [Raw Data] CBA19_Beauvericin_pos_30eV_1-1_01_1483.txt Beauvericin is a Fusarium mycotoxin. Beauvericin inhibits acyl-CoA: cholesterol acyltransferase (ACAT) activity with an IC50 of 3 μM in an enzyme assay using rat liver microsomes[1]. Beauvericin is a Fusarium mycotoxin. Beauvericin inhibits acyl-CoA: cholesterol acyltransferase (ACAT) activity with an IC50 of 3 μM in an enzyme assay using rat liver microsomes[1].