Lutein

(1R,4R)-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(4R)-4-hydroxy-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-3,5,5-trimethylcyclohex-2-en-1-ol

Formula: C40H56O2 (568.428)
Chinese Name: 叶黄素
BioDeep ID: BioDeep_00000000574 ( View LC/MS Profile)
SMILES: [C@H]1(C=CC(C)=CC=CC(C)=CC=CC=C(C)C=CC=C(C)C=CC2=C(C)C[C@@H](O)CC2(C)C)C(C)=C[C@H](O)CC1(C)C



Found 11 Sample Hits

m/z Adducts Species Organ Scanning Sample
533.4124 [M+H-2H2O]+
PPM:3.3
Mus musculus Urinary bladder MALDI (CHCA)
HR2MSI_mouse_urinary_bladder - S096 - PXD001283
Resolution: 10μm, 260x134

Description

Mass spectrometry imaging of phospholipids in mouse urinary bladder (imzML dataset)
The spatial distribution of phospholipids in a tissue section of mouse urinary bladder was analyzed by MALDI MS imaging at 10 micrometer pixel size with high mass resolution (using an LTQ Orbitrap mass spectrometer).

R, ö, mpp A, Guenther S, Schober Y, Schulz O, Takats Z, Kummer W, Spengler B, Histology by mass spectrometry: label-free tissue characterization obtained from high-accuracy bioanalytical imaging. Angew Chem Int Ed Engl, 49(22):3834-8(2010)

Fig. S2: Single ion images of compounds shown in Fig. 1A-B : (upper left to lower right) m/z = 743.5482 (unknown), m/z = 741.5307 (SM (16:0), [M+K]+), m/z = 798.5410 (PC (34:1), [M+K]+), m/z = 616.1767 (heme b, M+), m/z = 772.5253 (PC (32:0), [M+K]+).

Stability of determined mass values was in the range of +/- 1 ppm over 22 hours of measurement (Fig. S4), with a standard deviation of 0.56 ppm. Accuracy data were obtained during tissue scanning experiments by monitoring the mass signal at nominal mass 798. The internal lock mass function of the Orbitrap instrument was used for automatic calibration during imaging measurements, using the known matrix-related ion signals at m/z = 137.0233, m/z = 444.0925 and m/z = 716.1246.

569.4292 [M+H]+
PPM:10.7
Bathymodiolus epithelial host cells MALDI (DHB)
MPIBremen_Bputeoserpentis_MALDI-FISH_DHB_233x233pixel_3um_mz400-1200_240k@200 - MTBLS744
Resolution: 3μm, 233x233

Description

The Bathymodiolus puteoserpentis specimen used for high resolution AP-MALDI-MSI was collected during the RV Meteor M126 cruise in 2016 at the Logatchev hydrothermal vent field on the Mid-Atlantic Ridge. The specimen was retrieved with the MARUM-Quest remotely operated vehicle (ROV) at the Irina II vent site at 3038 m depth, 14°45’11.01”N and 44°58’43.98”W, and placed in an insulated container to prevent temperature changes during recovery. Gills were dissected from the mussel as soon as brought on board after ROV retrieval, submerged in precooled 2% w/v carboxymethyl cellulose gel (CMC, Mw ~ 700,000, Sigma-Aldrich Chemie GmbH) and snap-frozen in liquid N2. Samples were stored at -80 °C until use.
The CMC-embedded gills were cross-sectioned at 10 µm thickness with a cryostat (Leica CM3050 S, Leica Biosystems Nussloch GmbH) at a chamber temperature of -35 °C and object holder at -22 °C. Individual sections were thaw-mounted onto coated Polysine slides (Thermo Scientific) and subsequently frozen in the cryostat chamber. Slides with tissue sections were stored in slide containers with silica granules, to prevent air moisture condensation on the tissue upon removal from the freezer. Before AP-MALDI matrix application, the sample was warmed to room temperature under a dry atmosphere in a sealed slide container (LockMailer microscope slide jar, Sigma-Aldrich, Steinheim, Germany), filled with silica granules (Carl Roth GmbH) to avoid condensation on the cold glass slide. The sample glass slide was marked with white paint around the tissue for orientation during image acquisition as previously described[1]. Additionally, optical images of the tissue section were acquired with a digital microscope (VHX-5000 Series, Keyence, Neu-Isenburg, Germany) prior to matrix application. To apply the matrix, we used an ultrafine pneumatic sprayer system with N2 gas (SMALDIPrep, TransMIT GmbH, Giessen, Germany)[2], to deliver 100 μl of a 30 mg/ml solution of 2,5-dihydroxybenzoic acid (DHB; 98% 574 purity, Sigma-Aldrich, Steinheim, Germany) dissolved in acetone/water (1:1 v/v) containing 0.1% trifluoroacetic acid (TFA). To locate the field of view and facilitate laser focusing, a red marker was applied adjacent to the matrix-covered tissue section. Ref: [1] Kaltenpoth M, Strupat K, Svatoš A Linking metabolite production to taxonomic identity in environmental samples by (MA)LDI-FISH. ISME J. 2016 Feb;10(2):527-31. doi: 10.1038/ismej.2015.122. PMID:26172211 [2] Kompauer M, Heiles S, Spengler B. Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution. Nat Methods. 2017 Jan;14(1):90-96. doi: 10.1038/nmeth.4071. PMID:27842060
High-resolution AP-MALDI-MSI measurements were carried out at an experimental ion source setup [1][2], coupled to a Fourier transform orbital trapping mass spectrometer (Q Exactive HF, Thermo Fisher Scientific GmbH, Bremen, Germany). The sample was rastered with 233 x 233 laser spots with a step size of 3 µm without oversampling, resulting in an imaged area of 699 x 699 µm. AP-MALDI-MSI measurements were performed in positive mode for a mass detection range of 400–1200 Da and a mass resolving power of 240,000 (at 200 m/z). After AP-MALDI-MSI, the measured sample surface was recorded using a stereomicroscope (SMZ25, Nikon, Düssedorf, Germany). Ref: [1] Kompauer M, Heiles S, Spengler B. Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution. Nat Methods. 2017 Jan;14(1):90-96. doi: 10.1038/nmeth.4071. PMID:27842060 [2] Kompauer M, Heiles S, Spengler B. Autofocusing MALDI mass spectrometry imaging of tissue sections and 3D chemical topography of nonflat surfaces. Nat Methods. 2017 Dec;14(12):1156-1158. doi:10.1038/nmeth.4433. PMID:28945703

591.4135 [M+Na]+
PPM:6.3
Bathymodiolus epithelial host cells MALDI (DHB)
MPIBremen_Bputeoserpentis_MALDI-FISH_DHB_233x233pixel_3um_mz400-1200_240k@200 - MTBLS744
Resolution: 3μm, 233x233

Description

The Bathymodiolus puteoserpentis specimen used for high resolution AP-MALDI-MSI was collected during the RV Meteor M126 cruise in 2016 at the Logatchev hydrothermal vent field on the Mid-Atlantic Ridge. The specimen was retrieved with the MARUM-Quest remotely operated vehicle (ROV) at the Irina II vent site at 3038 m depth, 14°45’11.01”N and 44°58’43.98”W, and placed in an insulated container to prevent temperature changes during recovery. Gills were dissected from the mussel as soon as brought on board after ROV retrieval, submerged in precooled 2% w/v carboxymethyl cellulose gel (CMC, Mw ~ 700,000, Sigma-Aldrich Chemie GmbH) and snap-frozen in liquid N2. Samples were stored at -80 °C until use.
The CMC-embedded gills were cross-sectioned at 10 µm thickness with a cryostat (Leica CM3050 S, Leica Biosystems Nussloch GmbH) at a chamber temperature of -35 °C and object holder at -22 °C. Individual sections were thaw-mounted onto coated Polysine slides (Thermo Scientific) and subsequently frozen in the cryostat chamber. Slides with tissue sections were stored in slide containers with silica granules, to prevent air moisture condensation on the tissue upon removal from the freezer. Before AP-MALDI matrix application, the sample was warmed to room temperature under a dry atmosphere in a sealed slide container (LockMailer microscope slide jar, Sigma-Aldrich, Steinheim, Germany), filled with silica granules (Carl Roth GmbH) to avoid condensation on the cold glass slide. The sample glass slide was marked with white paint around the tissue for orientation during image acquisition as previously described[1]. Additionally, optical images of the tissue section were acquired with a digital microscope (VHX-5000 Series, Keyence, Neu-Isenburg, Germany) prior to matrix application. To apply the matrix, we used an ultrafine pneumatic sprayer system with N2 gas (SMALDIPrep, TransMIT GmbH, Giessen, Germany)[2], to deliver 100 μl of a 30 mg/ml solution of 2,5-dihydroxybenzoic acid (DHB; 98% 574 purity, Sigma-Aldrich, Steinheim, Germany) dissolved in acetone/water (1:1 v/v) containing 0.1% trifluoroacetic acid (TFA). To locate the field of view and facilitate laser focusing, a red marker was applied adjacent to the matrix-covered tissue section. Ref: [1] Kaltenpoth M, Strupat K, Svatoš A Linking metabolite production to taxonomic identity in environmental samples by (MA)LDI-FISH. ISME J. 2016 Feb;10(2):527-31. doi: 10.1038/ismej.2015.122. PMID:26172211 [2] Kompauer M, Heiles S, Spengler B. Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution. Nat Methods. 2017 Jan;14(1):90-96. doi: 10.1038/nmeth.4071. PMID:27842060
High-resolution AP-MALDI-MSI measurements were carried out at an experimental ion source setup [1][2], coupled to a Fourier transform orbital trapping mass spectrometer (Q Exactive HF, Thermo Fisher Scientific GmbH, Bremen, Germany). The sample was rastered with 233 x 233 laser spots with a step size of 3 µm without oversampling, resulting in an imaged area of 699 x 699 µm. AP-MALDI-MSI measurements were performed in positive mode for a mass detection range of 400–1200 Da and a mass resolving power of 240,000 (at 200 m/z). After AP-MALDI-MSI, the measured sample surface was recorded using a stereomicroscope (SMZ25, Nikon, Düssedorf, Germany). Ref: [1] Kompauer M, Heiles S, Spengler B. Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution. Nat Methods. 2017 Jan;14(1):90-96. doi: 10.1038/nmeth.4071. PMID:27842060 [2] Kompauer M, Heiles S, Spengler B. Autofocusing MALDI mass spectrometry imaging of tissue sections and 3D chemical topography of nonflat surfaces. Nat Methods. 2017 Dec;14(12):1156-1158. doi:10.1038/nmeth.4433. PMID:28945703

569.4292 [M+H]+
PPM:10.7
Bathymodiolus epithelial host cells MALDI (DHB)
MPIMM_054_QE_P_BP_CF_Bputeoserpentis_MALDI-FISH8_Sl16_s1_DHB_233x233_3um - MTBLS744
Resolution: 3μm, 233x233

Description

591.4135 [M+Na]+
PPM:6.3
Bathymodiolus epithelial host cells MALDI (DHB)
MPIMM_054_QE_P_BP_CF_Bputeoserpentis_MALDI-FISH8_Sl16_s1_DHB_233x233_3um - MTBLS744
Resolution: 3μm, 233x233

Description

569.4291 [M+H]+
PPM:10.9
Bathymodiolus epithelial host cells MALDI (DHB)
MPIMM_039_QE_P_BP_CF_Bputeoserpentis_MALDI-FISH8_Sl14_s1_DHB_233x233_3um - MTBLS744
Resolution: 3μm, 233x234

Description

591.4134 [M+Na]+
PPM:6.5
Bathymodiolus epithelial host cells MALDI (DHB)
MPIMM_039_QE_P_BP_CF_Bputeoserpentis_MALDI-FISH8_Sl14_s1_DHB_233x233_3um - MTBLS744
Resolution: 3μm, 233x234

Description

569.435 [M+H]+
PPM:0.5
Mus musculus Liver MALDI (CHCA)
Salmonella_final_pos_recal - MTBLS2671
Resolution: 17μm, 691x430

Description

A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium. [dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671.

586.4511 [M+NH4]+
PPM:18.3
Mus musculus Liver MALDI (CHCA)
Salmonella_final_pos_recal - MTBLS2671
Resolution: 17μm, 691x430

Description

A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium. [dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671.

569.4289 [M+H]+
PPM:11.2
Mytilus edulis gill MALDI (DHB)
20190202_MS38_Crassostrea_Gill_350-1500_DHB_pos_A25_11um_305x210 - MTBLS2960
Resolution: 11μm, 305x210

Description

single cell layer class_4 is the gill structure cells, metabolite ion 534.2956 is the top representive ion of this type of cell

586.4635 [M+NH4]+
PPM:2.8
Mytilus edulis gill MALDI (DHB)
20190202_MS38_Crassostrea_Gill_350-1500_DHB_pos_A25_11um_305x210 - MTBLS2960
Resolution: 11μm, 305x210

Description

single cell layer class_4 is the gill structure cells, metabolite ion 534.2956 is the top representive ion of this type of cell


Lutein is a common carotenoid xanthophyll found in nature. Carotenoids are among the most common pigments in nature and are natural lipid-soluble antioxidants. Lutein is one of the two carotenoids (the other is zeaxanthin) that accumulate in the eye lens and macular region of the retina with concentrations in the macula greater than those found in plasma and other tissues. Lutein and zeaxanthin have identical chemical formulas and are isomers, but they are not stereoisomers. The main difference between them is in the location of a double bond in one of the end rings. This difference gives lutein three chiral centers whereas zeaxanthin has two. A relationship between macular pigment optical density, a marker of lutein and zeaxanthin concentration in the macula, and lens optical density, an antecedent of cataractous changes, has been suggested. The xanthophylls may act to protect the eye from ultraviolet phototoxicity via quenching reactive oxygen species and/or other mechanisms. Some observational studies have shown that generous intakes of lutein and zeaxanthin, particularly from certain xanthophyll-rich foods like spinach, broccoli, and eggs, are associated with a significant reduction in the risk for cataracts (up to 20\\\\\%) and age-related macular degeneration (up to 40\\\\\%). While the pathophysiology of cataract and age-related macular degeneration is complex and contains both environmental and genetic components, research studies suggest dietary factors including antioxidant vitamins and xanthophylls may contribute to a reduction in the risk of these degenerative eye diseases. Further research is necessary to confirm these observations (PMID: 11023002). Lutein is a carotenol. It has a role as a food colouring and a plant metabolite. It derives from a hydride of a (6R)-beta,epsilon-carotene. Lutein is an xanthophyll and one of 600 known naturally occurring carotenoids. Lutein is synthesized only by plants and like other xanthophylls is found in high quantities in green leafy vegetables such as spinach, kale and yellow carrots. In green plants, xanthophylls act to modulate light energy and serve as non-photochemical quenching agents to deal with triplet chlorophyll (an excited form of chlorophyll), which is overproduced at very high light levels, during photosynthesis. Lutein is a natural product found in Eupatorium cannabinum, Hibiscus syriacus, and other organisms with data available. Lutein is lutein (LOO-teen) is a oxygenated carotenoid found in vegetables and fruits. lutein is found in the macula of the eye, where it is believed to act as a yellow filter. Lutein acts as an antioxidant, protecting cells against the damaging effects of free radicals. A xanthophyll found in the major LIGHT-HARVESTING PROTEIN COMPLEXES of plants. Dietary lutein accumulates in the MACULA LUTEA. See also: Calendula Officinalis Flower (part of); Corn (part of); Chicken; lutein (component of) ... View More ... Pigment from egg yolk and leaves. Found in all higher plants. Nutriceutical with anticancer and antioxidation props. Potentially useful for the treatment of age-related macular degeneration (AMD) of the eye Lutein A. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=127-40-2 (retrieved 2024-07-12) (CAS RN: 127-40-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Lutein (Xanthophyll) is a carotenoid with reported anti-inflammatory properties. A large body of evidence shows that lutein has several beneficial effects, especially on eye health[1]. Lutein exerts its biological activities, including anti-inflammation, anti-oxidase and anti-apoptosis, through effects on reactive oxygen species (ROS)[2][3]. Lutein is able to arrive in the brain and shows antidepressant-like and neuroprotective effects. Lutein is orally active[4]. Lutein (Xanthophyll) is a carotenoid with reported anti-inflammatory properties. A large body of evidence shows that lutein has several beneficial effects, especially on eye health[1]. Lutein exerts its biological activities, including anti-inflammation, anti-oxidase and anti-apoptosis, through effects on reactive oxygen species (ROS)[2][3]. Lutein is able to arrive in the brain and shows antidepressant-like and neuroprotective effects. Lutein is orally active[4].