Cer(d17:1/LTE4)

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-2-{[(2S,3R)-1,3-dihydroxyheptadec-4-en-2-yl]-C-hydroxycarbonimidoyl}ethyl]sulphanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

Formula: C40H70N2O6S (706.4954)
Chinese Name:
BioDeep ID: BioDeep_00000214902 ( View LC/MS Profile)
SMILES: CCCCCCCCCCCC\C=C\[C@@H](O)[C@H](CO)NC(=O)[C@@H](N)CS[C@H](\C=C\C=C\C=C/C\C=C/CCCCC)[C@@H](O)CCCC(O)=O



Found 17 Sample Hits

m/z Adducts Species Organ Scanning Sample
707.5011 [M+H]+
PPM:2.3
Rattus norvegicus Brain MALDI (CHCA)
Spectroswiss - sol_2x_br_2 - 2016-09-29_07h40m45s
Resolution: 17μm, 488x193

Description

706.5313 [M-H2O+NH4]+
PPM:17.8
Mus musculus Lung MALDI (DHB)
image3 - MTBLS2075
Resolution: 40μm, 146x190

Description

Fig. 4 MALDI-MSI data of mouse lung tissue after administration with D9-choline and U13C-DPPC–containing Poractant alfa surfactant (labels administered 12 h prior to tissue collection). Ion images of (A) m/z 796.6856 ([U13C-DPPC+Na]+), (B) m/z 756.5154 [PC32:0+Na]+), and (C) m/z 765.6079 ([D9-PC32:0+Na]+). D: Overlay image of [U13C-PC32:0+Na]+ (red) and [D9-PC32:0+Na]+ (green). Part-per-million (ppm) mass errors are indicated in parentheses. All images were visualized using total-ion-current normalization and using hotspot removal (high quantile = 99%). DPPC = PC16:0/16:0. MSI, mass spectrometry imaging; PC, phosphatidylcholine; U13C-DPPC, universally 13C-labeled dipalmitoyl PC.

706.5319 [M-H2O+NH4]+
PPM:18.7
Mus musculus Lung MALDI (DHB)
image2 - MTBLS2075
Resolution: 40μm, 550x256

Description

Supplementary Figure S6. Ion distribution images for (a) [PC36:4+Na]+ (m/z 804.5514) and (b) [PC38:6+Na]+ (m/z 828.5515) obtained from mouse lung tissue collected 6 h after administration of D9- choline and U13C-DPPC–containing CHF5633. Parts-per-million (ppm) mass errors are indicated in parentheses. (c) Magnification of the boxed region in (a) with selected bronchiolar regions outlined in white boxes. (d) The corresponding H&E-stained tissue section with the same selected bronchiolar regions outlined in black boxes. These data demonstrate the co-localisation of the polyunsaturated lipids PC36:4 and PC38:6 with the bronchiolar regions of the lung. All MSI images were visualised using total ion current normalisation and hotspot removal (high quantile = 99%).

707.5029 [M+H]+
PPM:0.3
Homo sapiens esophagus DESI ()
LNTO22_1_3 - MTBLS385
Resolution: 75μm, 121x68

Description

707.5003 [M+H]+
PPM:3.4
Homo sapiens esophagus DESI ()
LNTO22_1_4 - MTBLS385
Resolution: 17μm, 82x80

Description

707.5111 [M+H]+
PPM:11.9
Homo sapiens esophagus DESI ()
LNTO29_16_2 - MTBLS385
Resolution: 17μm, 95x101

Description

707.5039 [M+H]+
PPM:1.7
Homo sapiens esophagus DESI ()
LNTO22_1_9 - MTBLS385
Resolution: 75μm, 89x74

Description

671.4871 [M+H-2H2O]+
PPM:8.2
Mus musculus Liver MALDI (CHCA)
Salmonella_final_pos_recal - MTBLS2671
Resolution: 17μm, 691x430

Description

A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium. [dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671.

707.4985 [M+H]+
PPM:5.9
Mus musculus Liver MALDI (CHCA)
Salmonella_final_pos_recal - MTBLS2671
Resolution: 17μm, 691x430

Description

A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium. [dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671.

724.5298 [M+NH4]+
PPM:0.7
Homo sapiens colorectal adenocarcinoma DESI ()
80TopL, 50TopR, 70BottomL, 60BottomR-profile - MTBLS415
Resolution: 17μm, 137x136

Description

The human colorectal adenocarcinoma sample was excised during a surgical operation performed at the Imperial College Healthcare NHS Trust. The sample and procedures were carried out in accordance with ethical approval (14/EE/0024).

707.5036 [M+H]+
PPM:1.3
Homo sapiens esophagus DESI ()
LNTO26_7_1 - MTBLS385
Resolution: 17μm, 75x74

Description

707.5034 [M+H]+
PPM:1
Homo sapiens esophagus DESI ()
LNTO26_7_3 - MTBLS385
Resolution: 75μm, 82x88

Description

707.5034 [M+H]+
PPM:1
Homo sapiens esophagus DESI ()
LNTO22_1_5 - MTBLS385
Resolution: 75μm, 135x94

Description

707.5032 [M+H]+
PPM:0.7
Homo sapiens esophagus DESI ()
LNTO22_1_7 - MTBLS385
Resolution: 75μm, 69x54

Description

707.5027 [M+H]+
PPM:0
Homo sapiens esophagus DESI ()
LNTO22_1_8 - MTBLS385
Resolution: 75μm, 69x61

Description

707.503 [M+H]+
PPM:0.4
Homo sapiens esophagus DESI ()
LNTO22_2_1 - MTBLS385
Resolution: 75μm, 89x88

Description

707.5033 [M+H]+
PPM:0.8
Homo sapiens esophagus DESI ()
LNTO22_2_2 - MTBLS385
Resolution: 75μm, 135x94

Description


Cer(d17:1/LTE4) is an oxidized ceramide (Cer). As all ceramides, oxidized ceramides are members of the class of compounds known as sphingolipids (SPs), or glycosylceramides. SPs are lipids containing a backbone of sphingoid bases (e.g. sphingosine or sphinganine) that are often covalently bound to a fatty acid derivative through N-acylation. SPs are found in cell membranes, particularly in peripheral nerve cells and the cells found in the central nervous system (including the brain and spinal cord). Sphingolipids are extremely versatile molecules that have functions controlling fundamental cellular processes such as cell division, differentiation, and cell death. Impairments associated with sphingolipid metabolism are associated with many common human diseases such as diabetes, various cancers, microbial infections, diseases of the cardiovascular and respiratory systems, Alzheimer’s disease and other neurological syndromes. The biosynthesis and catabolism of sphingolipids involves a large number of intermediate metabolites where many different enzymes are involved. Simple sphingolipids, which include the sphingoid bases and ceramides, make up the early products of the sphingolipid synthetic pathways, while complex sphingolipids may be formed by the addition of head groups to the ceramide template (Wikipedia). In humans, ceramides are phosphorylated to ceramide phosphates (CerPs) through the action of a specific ceramide kinase (CerK). Ceramide phosphates are important metabolites of ceramides as they act as a mediators of the inflammatory response. Ceramides are also one of the hydrolysis byproducts of sphingomyelins (SMs) through the action of the enzyme sphingomyelin phosphodiesterase, which has been identified in the subcellular fractions of human epidermis (PMID: 25935) and many other tissues. Ceramides can also be synthesized from serine and palmitate in a de novo pathway and are regarded as important cellular signals for inducing apoptosis (PMID: 14998372). Ceramides are key in the biosynthesis of glycosphingolipids and gangliosides. In terms of its appearance and structure, Cer(d18:1/22:1(13Z)) is a colorless solid that consists of an unsaturated 18-carbon sphingoid base with an attached unsaturated 13Z-docosenoyl fatty acid side chain. In most mammalian SPs, the 18-carbon sphingoid bases are predominant (PMID: 9759481).