DG(11D3/9D3/0:0)
Formula: C41H68O7 (672.4965)
Chinese Name:
BioDeep ID: BioDeep_00000108730
( View LC/MS Profile)
SMILES: [H][C@](CO)(COC(=O)CCCCCCCCCCC1=C(C)C(C)=C(CCC)O1)OC(=O)CCCCCCCCC1=C(C)C(C)=C(CCC)O1
Found 10 Sample Hits
m/z | Adducts | Species | Organ | Scanning | Sample | |
---|---|---|---|---|---|---|
673.5022 | [M+H]+PPM:2.3 |
Macropus giganteus | Brain | MALDI (BPYN) |
170321_kangaroobrain-dan3-pos_maxof50.0_med1 - 170321_kangaroobrain-dan3-pos_maxof50.0_med1Resolution: 50μm, 81x50
Sample information
Organism: Macropus giganteus (kangaroo)
Organism part: Brain
Condition: Wildtype
Sample growth conditions: Wild |
|
695.4752 | [M+Na]+PPM:15.1 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_3 - MTBLS385Resolution: 75μm, 121x68
|
|
673.5015 | [M+H]+PPM:3.3 |
Mus musculus | Liver | MALDI (CHCA) |
Salmonella_final_pos_recal - MTBLS2671Resolution: 17μm, 691x430
A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium.
[dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671. |
|
673.5038 | [M+H]+PPM:0.1 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
80TopL, 50TopR, 70BottomL, 60BottomR-profile - MTBLS415Resolution: 17μm, 137x136
The human colorectal adenocarcinoma sample was excised during a surgical operation performed at the Imperial College Healthcare NHS Trust. The sample and procedures were carried out in accordance with ethical approval (14/EE/0024). |
|
673.5012 | [M+H]+PPM:3.8 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
520TopL, 490TopR, 510BottomL, 500BottomR-profile - MTBLS415Resolution: 17μm, 147x131
The human colorectal adenocarcinoma sample was excised during a surgical operation performed at the Imperial College Healthcare NHS Trust. The sample and procedures were carried out in accordance with ethical approval (14/EE/0024). |
|
673.4997 | [M+H]+PPM:6 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
439TopL, 409TopR, 429BottomL, 419BottomR-profile - MTBLS415Resolution: 17μm, 157x136
The human colorectal adenocarcinoma sample was excised during a surgical operation performed at the Imperial College Healthcare NHS Trust. The sample and procedures were carried out in accordance with ethical approval (14/EE/0024). |
|
673.4976 | [M+H]+PPM:9.1 |
Homo sapiens | NA | DESI () |
160TopL,130TopR,150BottomL,140BottomR-profile - MTBLS415Resolution: 17μm, 142x136
|
|
695.4754 | [M+Na]+PPM:14.8 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_7 - MTBLS385Resolution: 75μm, 69x54
|
|
673.5007 | [M+H]+PPM:4.5 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
240TopL, 210TopR, 230BottomL, 220BottomR-centroid - MTBLS176Resolution: 50μm, 142x141
|
|
673.5012 | [M+H]+PPM:3.8 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
200TopL, 170TopR, 190BottomL, 180BottomR-centroid - MTBLS176Resolution: 50μm, 132x126
|
|
Diglycerides (DGs) are also known as diacylglycerols or diacylglycerides, meaning that they are glycerides consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. DG(11D3/9D3/0:0), in particular, consists of one chain of 11-(3,4-dimethyl-5-propylfuran-2-yl)undecanoic acid at the C-1 position and one chain of 9-(3,4-dimethyl-5-propylfuran-2-yl)nonanoic acid at the C-2 position. Mono- and diacylglycerols are common food additives used to blend together certain ingredients, such as oil and water, which would not otherwise blend well. Diacylglycerols are often found in bakery products, beverages, ice cream, chewing gum, shortening, whipped toppings, margarine, and confections.