Nonoxynol-9
Formula: C33H60O10 (616.4186)
Chinese Name: 壬基酚聚醚-8, 壬醇9
BioDeep ID: BioDeep_00000033379
( View LC/MS Profile)
SMILES: CCCCCCCCCC1=CC=C(C=C1)OCCOCCOCCOCCOCCOCCOCCOCCOCCO
Found 17 Sample Hits
m/z | Adducts | Species | Organ | Scanning | Sample | |
---|---|---|---|---|---|---|
634.4533 | [M+NH4]+PPM:1.3 |
Marker Pen | NA | DESI (None) |
3ul_0.8Mpa_RAW_20241016-PAPER PNMK - MEMI_testResolution: 30μm, 315x42
By writing the four English letters “PNMK” on white paper with a marker pen, and then scanning with a DESI ion source to obtain the scanning result. The signal of the chemical substances on the marker pen used appears on the channel with an m/z value of |
|
617.4226 | [M+H]+PPM:5.3 |
Homo sapiens | esophagus | DESI () |
LNTO29_16_2 - MTBLS385Resolution: 17μm, 95x101
|
|
617.4217 | [M+H]+PPM:6.8 |
Homo sapiens | esophagus | DESI () |
TO42T - MTBLS385Resolution: 17μm, 69x81
|
|
616.444 | [M-H2O+NH4]+PPM:3.4 |
Mus musculus | Liver | MALDI (CHCA) |
Salmonella_final_pos_recal - MTBLS2671Resolution: 17μm, 691x430
A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium.
[dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671. |
|
617.4174 | [M+H]+PPM:13.8 |
Mus musculus | Liver | MALDI (CHCA) |
Salmonella_final_pos_recal - MTBLS2671Resolution: 17μm, 691x430
A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium.
[dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671. |
|
617.4227 | [M+H]+PPM:5.2 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
80TopL, 50TopR, 70BottomL, 60BottomR-profile - MTBLS415Resolution: 17μm, 137x136
The human colorectal adenocarcinoma sample was excised during a surgical operation performed at the Imperial College Healthcare NHS Trust. The sample and procedures were carried out in accordance with ethical approval (14/EE/0024). |
|
617.4244 | [M+H]+PPM:2.4 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
520TopL, 490TopR, 510BottomL, 500BottomR-profile - MTBLS415Resolution: 17μm, 147x131
The human colorectal adenocarcinoma sample was excised during a surgical operation performed at the Imperial College Healthcare NHS Trust. The sample and procedures were carried out in accordance with ethical approval (14/EE/0024). |
|
617.4222 | [M+H]+PPM:6 |
Homo sapiens | esophagus | DESI () |
LNTO29_16_3 - MTBLS385Resolution: 17μm, 108x107
|
|
617.4222 | [M+H]+PPM:6 |
Homo sapiens | esophagus | DESI () |
TO31T - MTBLS385Resolution: 75μm, 56x54
|
|
617.423 | [M+H]+PPM:4.7 |
Homo sapiens | esophagus | DESI () |
TO29T - MTBLS385Resolution: 75μm, 56x48
|
|
617.4223 | [M+H]+PPM:5.8 |
Homo sapiens | esophagus | DESI () |
LNTO30_8M_2 - MTBLS385Resolution: 75μm, 108x68
|
|
617.4223 | [M+H]+PPM:5.8 |
Homo sapiens | esophagus | DESI () |
LNTO30_8M_3 - MTBLS385Resolution: 75μm, 69x54
|
|
617.4226 | [M+H]+PPM:5.3 |
Homo sapiens | esophagus | DESI () |
LNTO30_17_2 - MTBLS385Resolution: 75μm, 82x54
|
|
617.4225 | [M+H]+PPM:5.5 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_5 - MTBLS385Resolution: 75μm, 135x94
|
|
617.4217 | [M+H]+PPM:6.8 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
240TopL, 210TopR, 230BottomL, 220BottomR-centroid - MTBLS176Resolution: 50μm, 142x141
|
|
617.4225 | [M+H]+PPM:5.5 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
200TopL, 170TopR, 190BottomL, 180BottomR-centroid - MTBLS176Resolution: 50μm, 132x126
|
|
617.4222 | [M+H]+PPM:6 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
120TopL, 90TopR, 110BottomL, 100BottomR-centroid - MTBLS176Resolution: 50μm, 132x136
|
|
Nonoxynol-9 (N-9) is a typical surfactant used as a vaginal spermicide. Spermicides are locally acting non-hormonal contraceptives. When present in the vagina during intercourse, they immobilize/inactivate/damage and/or kill sperms without eliciting systemic effects. N-9 has been in use for more than 30 years as an over-the-counter (OTC) drug in creams, gels, foams and condom lubricants. It is the most commonly used spermicidal contraceptive in the UK and the USA. In several European countries, spermicides are no longer on the market. D009676 - Noxae > D000988 - Antispermatogenic Agents > D013089 - Spermatocidal Agents D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D013501 - Surface-Active Agents > D011092 - Polyethylene Glycols D001697 - Biomedical and Dental Materials