PG(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
Formula: C46H73O10P (816.4941)
Chinese Name:
BioDeep ID: BioDeep_00000031737
( View LC/MS Profile)
SMILES: [H][C@](O)(CO)COP(O)(=O)OC[C@@]([H])(COC(=O)CCCC\C=C/C\C=C/C\C=C/CCCCC)OC(=O)CC\C=C/C\C=C/C\C=C/C\C=C/C\C=C/C\C=C/CC
Found 23 Sample Hits
m/z | Adducts | Species | Organ | Scanning | Sample | |
---|---|---|---|---|---|---|
799.503 | [M+H-H2O]+PPM:15.2 |
Mus musculus | Urinary bladder | MALDI (CHCA) |
HR2MSI_mouse_urinary_bladder - S096 - PXD001283Resolution: 10μm, 260x134
Mass spectrometry imaging of phospholipids in mouse urinary bladder (imzML dataset) |
|
817.4885 | [M+H]+PPM:15.8 |
Bathymodiolus | epithelial host cells | MALDI (DHB) |
MPIBremen_Bputeoserpentis_MALDI-FISH_DHB_233x233pixel_3um_mz400-1200_240k@200 - MTBLS744Resolution: 3μm, 233x233
The Bathymodiolus puteoserpentis specimen used for high resolution AP-MALDI-MSI was collected during the RV Meteor M126 cruise in 2016 at the Logatchev hydrothermal vent field on the Mid-Atlantic Ridge. The specimen was retrieved with the MARUM-Quest remotely operated vehicle (ROV) at the Irina II vent site at 3038 m depth, 14°45’11.01”N and 44°58’43.98”W, and placed in an insulated container to prevent temperature changes during recovery. Gills were dissected from the mussel as soon as brought on board after ROV retrieval, submerged in precooled 2% w/v carboxymethyl cellulose gel (CMC, Mw ~ 700,000, Sigma-Aldrich Chemie GmbH) and snap-frozen in liquid N2. Samples were stored at -80 °C until use.
|
|
817.4885 | [M+H]+PPM:15.8 |
Bathymodiolus | epithelial host cells | MALDI (DHB) |
MPIMM_054_QE_P_BP_CF_Bputeoserpentis_MALDI-FISH8_Sl16_s1_DHB_233x233_3um - MTBLS744Resolution: 3μm, 233x233
|
|
817.4876 | [M+H]+PPM:16.9 |
Bathymodiolus | epithelial host cells | MALDI (DHB) |
MPIMM_039_QE_P_BP_CF_Bputeoserpentis_MALDI-FISH8_Sl14_s1_DHB_233x233_3um - MTBLS744Resolution: 3μm, 233x234
|
|
799.5011 | [M+H-H2O]+PPM:12.9 |
Macropus giganteus | Brain | MALDI (BPYN) |
170321_kangaroobrain-dan3-pos_maxof50.0_med1 - 170321_kangaroobrain-dan3-pos_maxof50.0_med1Resolution: 50μm, 81x50
Sample information
Organism: Macropus giganteus (kangaroo)
Organism part: Brain
Condition: Wildtype
Sample growth conditions: Wild |
|
817.5129 | [M+H]+PPM:14.1 |
Macropus giganteus | Brain | MALDI (BPYN) |
170321_kangaroobrain-dan3-pos_maxof50.0_med1 - 170321_kangaroobrain-dan3-pos_maxof50.0_med1Resolution: 50μm, 81x50
Sample information
Organism: Macropus giganteus (kangaroo)
Organism part: Brain
Condition: Wildtype
Sample growth conditions: Wild |
|
817.5041 | [M+H]+PPM:3.3 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_3 - MTBLS385Resolution: 75μm, 121x68
|
|
817.5008 | [M+H]+PPM:0.7 |
Homo sapiens | esophagus | DESI () |
LNTO22_1_4 - MTBLS385Resolution: 17μm, 82x80
|
|
817.5021 | [M+H]+PPM:0.9 |
Homo sapiens | esophagus | DESI () |
TO42T - MTBLS385Resolution: 17μm, 69x81
|
|
817.5022 | [M+H]+PPM:1 |
Homo sapiens | esophagus | DESI () |
TO39T - MTBLS385Resolution: 17μm, 69x81
|
|
817.5027 | [M+H]+PPM:1.6 |
Homo sapiens | esophagus | DESI () |
LNTO29_16_3 - MTBLS385Resolution: 17μm, 108x107
|
|
817.5045 | [M+H]+PPM:3.8 |
Homo sapiens | esophagus | DESI () |
LNTO26_7_1 - MTBLS385Resolution: 17μm, 75x74
|
|
817.5053 | [M+H]+PPM:4.8 |
Homo sapiens | esophagus | DESI () |
LNTO26_7_2 - MTBLS385Resolution: 17μm, 135x101
|
|
817.5042 | [M+H]+PPM:3.4 |
Homo sapiens | esophagus | DESI () |
LNTO26_7_3 - MTBLS385Resolution: 75μm, 82x88
|
|
817.5009 | [M+H]+PPM:0.6 |
Homo sapiens | esophagus | DESI () |
TO40T - MTBLS385Resolution: 17μm, 82x74
|
|
817.5029 | [M+H]+PPM:1.9 |
Homo sapiens | esophagus | DESI () |
LNTO30_8M_3 - MTBLS385Resolution: 75μm, 69x54
|
|
817.5032 | [M+H]+PPM:2.2 |
Homo sapiens | esophagus | DESI () |
LNTO30_8M_4 - MTBLS385Resolution: 75μm, 62x48
|
|
817.504 | [M+H]+PPM:3.2 |
Homo sapiens | esophagus | DESI () |
LNTO30_8M_5 - MTBLS385Resolution: 75μm, 56x54
|
|
817.5032 | [M+H]+PPM:2.2 |
Homo sapiens | esophagus | DESI () |
LNTO30_17_2 - MTBLS385Resolution: 75μm, 82x54
|
|
817.5043 | [M+H]+PPM:3.6 |
Homo sapiens | esophagus | DESI () |
LNTO26_16_1 - MTBLS385Resolution: 75μm, 95x88
|
|
817.5028 | [M+H]+PPM:1.7 |
Homo sapiens | esophagus | DESI () |
LNTO29_18_2 - MTBLS385Resolution: 75μm, 62x68
|
|
817.5033 | [M+H]+PPM:2.3 |
Homo sapiens | esophagus | DESI () |
LNTO30_7_1 - MTBLS385Resolution: 75μm, 69x68
|
|
817.5031 | [M+H]+PPM:2.1 |
Homo sapiens | esophagus | DESI () |
LNTO30_7_2 - MTBLS385Resolution: 75μm, 82x68
|
|
PG(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is a phosphatidylglycerol or glycerophospholipid (PG or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the docosahexaenoic acid moiety is derived from fish oils. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PGs have a net charge of -1 at physiological pH and are found in high concentration in mitochondrial membranes and as components of pulmonary surfactant. PG also serves as a precursor for the synthesis of cardiolipin. PG is synthesized from CDP-diacylglycerol and glycerol-3-phosphate. PG(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) is a phosphatidylglycerol or glycerophospholipid (PG or GP). It is a glycerophospholipid in which a phosphoglycerol moiety occupies a glycerol substitution site. As is the case with diacylglycerols, phosphatidylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PG(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), in particular, consists of one chain of g-linolenic acid at the C-1 position and one chain of docosahexaenoic acid at the C-2 position. The g-linolenic acid moiety is derived from animal fats, while the docosahexaenoic acid moiety is derived from fish oils. Phosphatidylglycerol is present at a level of 1-2\\% in most animal tissues, but it can be the second most abundant phospholipid in lung surfactant at up to 11\\% of the total. It is well established that the concentration of phosphatidylglycerol increases during fetal development. Phosphatidylglycerol may be present in animal tissues merely as a precursor for diphosphatidylglycerol (cardiolipin). Phosphatidylglycerol is formed from phosphatidic acid by a sequence of enzymatic reactions that proceeds via the intermediate, cytidine diphosphate diacylglycerol (CDP-diacylglycerol). Bioynthesis proceeds by condensation of phosphatidic acid and cytidine triphosphate with elimination of pyrophosphate via the action of phosphatidate cytidyltransferase (or CDP-synthase). CDP-diacylglycerol then reacts with glycerol-3-phosphate via phosphatidylglycerophosphate synthase to form 3-sn-phosphatidyl-1-sn-glycerol 3-phosphoric acid, with the release of cytidine monophosphate (CMP). Finally, phosphatidylglycerol is formed by the action of specific phosphatases.