CDP-DG(18:0/18:1(11Z))
Formula: C48H87N3O15P2 (1007.5612)
Chinese Name:
BioDeep ID: BioDeep_00000028322
( View LC/MS Profile)
SMILES: [H][C@@](COC(=O)CCCCCCCCCCCCCCCCC)(COP(O)(=O)OP(O)(=O)OC[C@@]1([H])O[C@]([H])(C(O)[C@@]1([H])O)N1C=CC(N)=NC1=O)OC(=O)CCCCCCCCCC=CCCCCCC
Found 11 Sample Hits
m/z | Adducts | Species | Organ | Scanning | Sample | |
---|---|---|---|---|---|---|
990.5382 | [M+H-H2O]+PPM:19.9 |
Mus musculus | Urinary bladder | MALDI (CHCA) |
HR2MSI_mouse_urinary_bladder - S096 - PXD001283Resolution: 10μm, 260x134
Mass spectrometry imaging of phospholipids in mouse urinary bladder (imzML dataset) |
|
972.5394 | [M+H-2H2O]+PPM:8.2 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito03_17 - MTBLS58Resolution: 17μm, 208x108
1 male adult wild-type rat was obtained from Inserm U1085 - Irset Research Institute (University of Rennes1, France). Animals were age 60 days and were reared under ad-lib conditions. Care and handling of all animals complied with EU directive 2010/63/EU on the protection of animals used for scientific purposes. The whole epididymis was excised from each animal immediately post-mortem, loosely wrapped rapidly in an aluminum foil and a 2.5% (w/v) carboxymethylcellulose (CMC) solution was poured to embed the epididymis to preserve their morphology. To remove air bubbles, the filled aluminum molds was gently freezed by depositing it on isopentane or dry ice, then on the nitrogen vapors and finally by progressively dipping the CMC/sample coated with aluminum foil into liquid nitrogen (or only flush with liquid nitrogen). Frozen tissues were stored at -80 °C until use to avoid degradation. |
|
972.5398 | [M+H-2H2O]+PPM:7.8 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito03_18 - MTBLS58Resolution: 17μm, 208x104
|
|
972.5389 | [M+H-2H2O]+PPM:8.7 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito08_43 - MTBLS58Resolution: 17μm, 298x106
|
|
972.5396 | [M+H-2H2O]+PPM:8 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito08_44 - MTBLS58Resolution: 17μm, 299x111
|
|
972.5391 | [M+H-2H2O]+PPM:8.5 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito01_04 - MTBLS58Resolution: 17μm, 178x91
|
|
1007.557 | [M]+PPM:3.6 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito01_04 - MTBLS58Resolution: 17μm, 178x91
|
|
972.5394 | [M+H-2H2O]+PPM:8.2 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito01_03 - MTBLS58Resolution: 17μm, 159x110
|
|
1008.5716 | [M+H]+PPM:3.1 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito01_03 - MTBLS58Resolution: 17μm, 159x110
|
|
972.5396 | [M+H-2H2O]+PPM:8 |
Rattus norvegicus | normal | MALDI (DHB) |
epik_dhb_head_ito01_05 - MTBLS58Resolution: 17μm, 183x105
|
|
972.5397 | [M+H-2H2O]+PPM:7.9 |
Rattus norvegicus | Epididymis | MALDI (DHB) |
epik_dhb_head_ito01_06 - MTBLS58Resolution: 17μm, 183x103
|
|
CDP-DG(18:0/18:1(11Z)) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol. CDP-diacylglycerol (CDP-DG) is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(18:0/18:1(11Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The stearic acid moiety is derived from animal fats, coco butter and sesame oil, while the vaccenic acid moiety is derived from butter fat and animal fat. CDP-diacylglycerols are intermediates in the synthesis of phosphatidylglycerols (PG, PC, PS, PI), which is catalyzed by CDP-diacyl synthase, synthase, phosphatidylglycerolphosphate (PGP) synthase, phosphatidylinositol (PI) synthase, and phosphatidylserine (PS) synthase. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts, perhaps only 0.05\\% or so of the total phospholipids. [HMDB] CDP-DG(18:0/18:1(11Z)) is a cytidine diphosphate diacylglycerol or CDP-diacylglycerol. CDP-diacylglycerol (CDP-DG) is an important branchpoint intermediate in eukaryotic phospholipid biosynthesis and could be a key regulatory molecule in phospholipid metabolism. It is a glycerophospholipid in which a cytidine diphosphate moiety occupies a glycerol substitution site. As is the case with diacylglycerols, CDP-diacylglycerols can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. CDP-DG(18:0/18:1(11Z)), in particular, consists of one chain of stearic acid at the C-1 position and one chain of vaccenic acid at the C-2 position. The stearic acid moiety is derived from animal fats, coco butter and sesame oil, while the vaccenic acid moiety is derived from butter fat and animal fat. CDP-diacylglycerols are intermediates in the synthesis of phosphatidylglycerols (PG, PC, PS, PI), which is catalyzed by CDP-diacyl synthase, synthase, phosphatidylglycerolphosphate (PGP) synthase, phosphatidylinositol (PI) synthase, and phosphatidylserine (PS) synthase. Cytidine diphosphate diacylglycerols are rarely noticed in analyses of lipid compositions of tissues, as they are present is such small amounts, perhaps only 0.05\\% or so of the total phospholipids.