Heparan sulfate
Formula: C14H25NO21S3 (639.0081)
Chinese Name:
BioDeep ID: BioDeep_00000027629
( View LC/MS Profile)
SMILES: CO[C@@H]1O[C@@H](COS(O)(=O)=O)[C@H](O[C@@H]2O[C@@H]([C@H](OC)[C@@H](O)[C@@H]2OS(O)(=O)=O)C(O)=O)[C@@H](O)[C@@H]1NOS(O)(=O)=O
Found 26 Sample Hits
m/z | Adducts | Species | Organ | Scanning | Sample | |
---|---|---|---|---|---|---|
639.0014 | [M]+PPM:9.7 |
Mus musculus | Urinary bladder | MALDI (CHCA) |
HR2MSI_mouse_urinary_bladder - S096 - PXD001283Resolution: 10μm, 260x134
Mass spectrometry imaging of phospholipids in mouse urinary bladder (imzML dataset) |
|
640.0041 | [M+H]+PPM:17.7 |
Mus musculus | Urinary bladder | MALDI (CHCA) |
HR2MSI_mouse_urinary_bladder - S096 - PXD001283Resolution: 10μm, 260x134
Mass spectrometry imaging of phospholipids in mouse urinary bladder (imzML dataset) |
|
657.0298 | [M+NH4]+PPM:18.5 |
Mus musculus | Urinary bladder | MALDI (CHCA) |
HR2MSI_mouse_urinary_bladder - S096 - PXD001283Resolution: 10μm, 260x134
Mass spectrometry imaging of phospholipids in mouse urinary bladder (imzML dataset) |
|
640.0128 | [M+H]+PPM:4.1 |
Homo sapiens | Liver | MALDI (DHB) |
20171107_FIT4_DHBpos_p70_s50 - Rappez et al (2021) SpaceM reveals metabolic states of single cellsResolution: 50μm, 70x70
|
|
622.0114 | [M+H-H2O]+PPM:10.6 |
Mus musculus | Lung | MALDI (DHB) |
image1 - MTBLS2075Resolution: 40μm, 187x165
Fig. 2 MALDI-MSI data from the same mouse lung tissue analyzed in Fig. 1. A: Optical image of the post-MSI, H&E-stained tissue section. B–D, F–G: Ion images of (B) m/z 796.6855 ([U13C-DPPC+Na]+), (C) m/z 756.5514 ([PC32:0+Na]+), (D) m/z 765.6079 ([D9-PC32:0+Na]+), (F) m/z 754.5359 ([PC32:1+Na]+), and (G) m/z 763.5923 ([D9-PC32:1+Na]+). E, H: Ratio images of (E) [D9-PC32:0+Na]+:[PC32:0+Na]+ and (H) [D9-PC32:1+Na]+:[PC32:1+Na]+. Part-per-million (ppm) mass errors are indicated in parentheses. All images were visualized using total-ion-current normalization and using hotspot removal (high quantile = 99%). DPPC = PC16:0/16:0. U13C-DPPC, universally 13C-labeled dipalmitoyl PC; PC, phosphatidylcholine; MSI, mass spectrometry imaging; H&E, hematoxylin and eosin.
Fig 1-3, Fig S1-S3, S5 |
|
638.9983 | [M]+PPM:14.5 |
Mus musculus | Lung | MALDI (DHB) |
image1 - MTBLS2075Resolution: 40μm, 187x165
Fig. 2 MALDI-MSI data from the same mouse lung tissue analyzed in Fig. 1. A: Optical image of the post-MSI, H&E-stained tissue section. B–D, F–G: Ion images of (B) m/z 796.6855 ([U13C-DPPC+Na]+), (C) m/z 756.5514 ([PC32:0+Na]+), (D) m/z 765.6079 ([D9-PC32:0+Na]+), (F) m/z 754.5359 ([PC32:1+Na]+), and (G) m/z 763.5923 ([D9-PC32:1+Na]+). E, H: Ratio images of (E) [D9-PC32:0+Na]+:[PC32:0+Na]+ and (H) [D9-PC32:1+Na]+:[PC32:1+Na]+. Part-per-million (ppm) mass errors are indicated in parentheses. All images were visualized using total-ion-current normalization and using hotspot removal (high quantile = 99%). DPPC = PC16:0/16:0. U13C-DPPC, universally 13C-labeled dipalmitoyl PC; PC, phosphatidylcholine; MSI, mass spectrometry imaging; H&E, hematoxylin and eosin.
Fig 1-3, Fig S1-S3, S5 |
|
640.02 | [M+H]+PPM:7.2 |
Mus musculus | Lung | MALDI (DHB) |
image1 - MTBLS2075Resolution: 40μm, 187x165
Fig. 2 MALDI-MSI data from the same mouse lung tissue analyzed in Fig. 1. A: Optical image of the post-MSI, H&E-stained tissue section. B–D, F–G: Ion images of (B) m/z 796.6855 ([U13C-DPPC+Na]+), (C) m/z 756.5514 ([PC32:0+Na]+), (D) m/z 765.6079 ([D9-PC32:0+Na]+), (F) m/z 754.5359 ([PC32:1+Na]+), and (G) m/z 763.5923 ([D9-PC32:1+Na]+). E, H: Ratio images of (E) [D9-PC32:0+Na]+:[PC32:0+Na]+ and (H) [D9-PC32:1+Na]+:[PC32:1+Na]+. Part-per-million (ppm) mass errors are indicated in parentheses. All images were visualized using total-ion-current normalization and using hotspot removal (high quantile = 99%). DPPC = PC16:0/16:0. U13C-DPPC, universally 13C-labeled dipalmitoyl PC; PC, phosphatidylcholine; MSI, mass spectrometry imaging; H&E, hematoxylin and eosin.
Fig 1-3, Fig S1-S3, S5 |
|
662.0004 | [M+Na]+PPM:4.6 |
Mus musculus | Lung | MALDI (DHB) |
image1 - MTBLS2075Resolution: 40μm, 187x165
Fig. 2 MALDI-MSI data from the same mouse lung tissue analyzed in Fig. 1. A: Optical image of the post-MSI, H&E-stained tissue section. B–D, F–G: Ion images of (B) m/z 796.6855 ([U13C-DPPC+Na]+), (C) m/z 756.5514 ([PC32:0+Na]+), (D) m/z 765.6079 ([D9-PC32:0+Na]+), (F) m/z 754.5359 ([PC32:1+Na]+), and (G) m/z 763.5923 ([D9-PC32:1+Na]+). E, H: Ratio images of (E) [D9-PC32:0+Na]+:[PC32:0+Na]+ and (H) [D9-PC32:1+Na]+:[PC32:1+Na]+. Part-per-million (ppm) mass errors are indicated in parentheses. All images were visualized using total-ion-current normalization and using hotspot removal (high quantile = 99%). DPPC = PC16:0/16:0. U13C-DPPC, universally 13C-labeled dipalmitoyl PC; PC, phosphatidylcholine; MSI, mass spectrometry imaging; H&E, hematoxylin and eosin.
Fig 1-3, Fig S1-S3, S5 |
|
639.04 | [M-H2O+NH4]+PPM:13.5 |
Mus musculus | Left upper arm | MALDI (CHCA) |
357_l_total ion count - Limb defect imaging - Monash UniversityResolution: 50μm, 97x131
Diseased |
|
640.0238 | [M+H]+PPM:13.1 |
Mus musculus | Lung | MALDI (DHB) |
image3 - MTBLS2075Resolution: 40μm, 146x190
Fig. 4 MALDI-MSI data of mouse lung tissue after administration with D9-choline and U13C-DPPC–containing Poractant alfa surfactant (labels administered 12 h prior to tissue collection). Ion images of (A) m/z 796.6856 ([U13C-DPPC+Na]+), (B) m/z 756.5154 [PC32:0+Na]+), and (C) m/z 765.6079 ([D9-PC32:0+Na]+). D: Overlay image of [U13C-PC32:0+Na]+ (red) and [D9-PC32:0+Na]+ (green). Part-per-million (ppm) mass errors are indicated in parentheses. All images were visualized using total-ion-current normalization and using hotspot removal (high quantile = 99%). DPPC = PC16:0/16:0. MSI, mass spectrometry imaging; PC, phosphatidylcholine; U13C-DPPC, universally 13C-labeled dipalmitoyl PC. |
|
640.025 | [M+H]+PPM:15 |
Mus musculus | Lung | MALDI (DHB) |
image4 - MTBLS2075Resolution: 40μm, 162x156
Fig 6c
Fig. 6 MALDI-MSI of U13C-PC16:0/16:0 acyl chain remodeling. A: Averaged MALDI mass spectrum from lung tissue collected from mice euthanized 12 h after administration of D9-choline and U13C-DPPC–containing Poractant alfa surfactant. The ion at m/z 828.6321 is assigned as the [M+Na]+ ion of 13C24-PC16:0_20:4 formed by acyl remodeling of U13C-PC16:0/16:0. The “NL” value refers to the intensity of the base peak in the full range MS1 spectrum. B: MS/MS spectrum of precursor ions at m/z 828.5 ± 0.5 with fragment ions originating from [13C24-PC16:0_20:4+Na]+ annotated. Part-per-million (ppm) mass errors are provided in parentheses. C, D: MALDI-MSI data of [U13C-DPPC+Na]+ (blue), [PC36:4+Na]+ (green) and [13C24-PC16:0_20:4+Na]+ (red) in lung tissue collected from mice (C) 12 h and (D) 18 h after label administration. All images were visualized using total-ion-current normalization and hotspot removal (high quantile = 99%). MS/MS, tandem mass spectrometry; MSI, mass spectrometry imaging; PC, phosphatidylcholine; U13C-DPPC, universally 13C-labeled dipalmitoyl PC. |
|
640.0231 | [M+H]+PPM:12 |
Mus musculus | Lung | MALDI (DHB) |
image5 - MTBLS2075Resolution: 40μm, 163x183
Supplementary Figure S8. MALDI-MSI data of mouse lung tissue administered with D9-choline and
U 13C-DPPC–containing Poractant alfa surfactant (labels administered 18 h prior to sacrifice). Ion
images of (a) m/z 796.6856 ([U13C-DPPC+Na]+), (b) m/z 756.5154 [PC32:0+Na]+ and (c) m/z 765.6079
([D9-PC32:0+Na]+). (d) Overlay image of [U13C-DPPC+Na]+ (red) and [D9-PC32:0+Na]+ (green).
Parts per million (ppm) mass errors are indicated in parentheses. All images were visualised using totalion-current normalisation and using hotspot removal (high quantile = 99%). DPPC = PC16:0/16:0. |
|
622.012 | [M+H-H2O]+PPM:11.5 |
Mus musculus | Lung | MALDI (DHB) |
image2 - MTBLS2075Resolution: 40μm, 550x256
Supplementary Figure S6. Ion distribution images for (a) [PC36:4+Na]+ (m/z 804.5514) and (b)
[PC38:6+Na]+ (m/z 828.5515) obtained from mouse lung tissue collected 6 h after administration of D9-
choline and U13C-DPPC–containing CHF5633. Parts-per-million (ppm) mass errors are indicated in
parentheses. (c) Magnification of the boxed region in (a) with selected bronchiolar regions outlined in
white boxes. (d) The corresponding H&E-stained tissue section with the same selected bronchiolar
regions outlined in black boxes. These data demonstrate the co-localisation of the polyunsaturated lipids
PC36:4 and PC38:6 with the bronchiolar regions of the lung. All MSI images were visualised using
total ion current normalisation and hotspot removal (high quantile = 99%). |
|
638.9973 | [M]+PPM:16.1 |
Mus musculus | Lung | MALDI (DHB) |
image2 - MTBLS2075Resolution: 40μm, 550x256
Supplementary Figure S6. Ion distribution images for (a) [PC36:4+Na]+ (m/z 804.5514) and (b)
[PC38:6+Na]+ (m/z 828.5515) obtained from mouse lung tissue collected 6 h after administration of D9-
choline and U13C-DPPC–containing CHF5633. Parts-per-million (ppm) mass errors are indicated in
parentheses. (c) Magnification of the boxed region in (a) with selected bronchiolar regions outlined in
white boxes. (d) The corresponding H&E-stained tissue section with the same selected bronchiolar
regions outlined in black boxes. These data demonstrate the co-localisation of the polyunsaturated lipids
PC36:4 and PC38:6 with the bronchiolar regions of the lung. All MSI images were visualised using
total ion current normalisation and hotspot removal (high quantile = 99%). |
|
640.0192 | [M+H]+PPM:5.9 |
Mus musculus | Lung | MALDI (DHB) |
image2 - MTBLS2075Resolution: 40μm, 550x256
Supplementary Figure S6. Ion distribution images for (a) [PC36:4+Na]+ (m/z 804.5514) and (b)
[PC38:6+Na]+ (m/z 828.5515) obtained from mouse lung tissue collected 6 h after administration of D9-
choline and U13C-DPPC–containing CHF5633. Parts-per-million (ppm) mass errors are indicated in
parentheses. (c) Magnification of the boxed region in (a) with selected bronchiolar regions outlined in
white boxes. (d) The corresponding H&E-stained tissue section with the same selected bronchiolar
regions outlined in black boxes. These data demonstrate the co-localisation of the polyunsaturated lipids
PC36:4 and PC38:6 with the bronchiolar regions of the lung. All MSI images were visualised using
total ion current normalisation and hotspot removal (high quantile = 99%). |
|
622.0127 | [M+H-H2O]+PPM:12.7 |
Mytilus edulis | mantle | MALDI (DHB) |
20190201_MS38_Crassostrea_Mantle_350-1500_DHB_pos_A28_10um_270x210 - MTBLS2960Resolution: 10μm, 270x210
|
|
639.034 | [M-H2O+NH4]+PPM:4.1 |
Mytilus edulis | mantle | MALDI (DHB) |
20190201_MS38_Crassostrea_Mantle_350-1500_DHB_pos_A28_10um_270x210 - MTBLS2960Resolution: 10μm, 270x210
|
|
640.0089 | [M+H]+PPM:10.2 |
Mytilus edulis | mantle | MALDI (DHB) |
20190201_MS38_Crassostrea_Mantle_350-1500_DHB_pos_A28_10um_270x210 - MTBLS2960Resolution: 10μm, 270x210
|
|
622.0121 | [M+H-H2O]+PPM:11.7 |
Mytilus edulis | gill | MALDI (DHB) |
20190202_MS38_Crassostrea_Gill_350-1500_DHB_pos_A25_11um_305x210 - MTBLS2960Resolution: 11μm, 305x210
single cell layer |
|
639.0334 | [M-H2O+NH4]+PPM:3.2 |
Mytilus edulis | gill | MALDI (DHB) |
20190202_MS38_Crassostrea_Gill_350-1500_DHB_pos_A25_11um_305x210 - MTBLS2960Resolution: 11μm, 305x210
single cell layer |
|
640.0083 | [M+H]+PPM:11.1 |
Mytilus edulis | gill | MALDI (DHB) |
20190202_MS38_Crassostrea_Gill_350-1500_DHB_pos_A25_11um_305x210 - MTBLS2960Resolution: 11μm, 305x210
single cell layer |
|
622.0121 | [M+H-H2O]+PPM:11.7 |
Mytilus edulis | mantle | MALDI (DHB) |
20190216_MS38_Mytilus_mantle_350-1500_DHB_pos_A26_10um_275x210 - MTBLS2960Resolution: 10μm, 275x210
|
|
639.0334 | [M-H2O+NH4]+PPM:3.2 |
Mytilus edulis | mantle | MALDI (DHB) |
20190216_MS38_Mytilus_mantle_350-1500_DHB_pos_A26_10um_275x210 - MTBLS2960Resolution: 10μm, 275x210
|
|
640.0081 | [M+H]+PPM:11.4 |
Mytilus edulis | mantle | MALDI (DHB) |
20190216_MS38_Mytilus_mantle_350-1500_DHB_pos_A26_10um_275x210 - MTBLS2960Resolution: 10μm, 275x210
|
|
622.0121 | [M+H-H2O]+PPM:11.7 |
Drosophila melanogaster | brain | MALDI (DHB) |
Drosophila18 - 2019-10-16_14h26m34sResolution: 5μm, 686x685
Sample information
Organism: Drosophila melanogaster
Organism part: Brain
Condition: Healthy
Sample preparation
Sample stabilisation: Frozen
Tissue modification: Frozen
MALDI matrix: 2,5-dihydroxybenzoic acid (DHB)
MALDI matrix application: TM sprayer
Solvent: Aceton/water
MS analysis
Polarity: Positive
Ionisation source: Prototype
Analyzer: Orbitrap
Pixel size: 5μm × 5μm
Annotation settings
m/z tolerance (ppm): 3
Analysis version: Original MSM
Pixel count: 469910
Imzml file size: 696.23 MB
Ibd file size: 814.11 MB |
|
640.0147 | [M+H]+PPM:1.1 |
Drosophila melanogaster | brain | MALDI (DHB) |
Drosophila18 - 2019-10-16_14h26m34sResolution: 5μm, 686x685
Sample information
Organism: Drosophila melanogaster
Organism part: Brain
Condition: Healthy
Sample preparation
Sample stabilisation: Frozen
Tissue modification: Frozen
MALDI matrix: 2,5-dihydroxybenzoic acid (DHB)
MALDI matrix application: TM sprayer
Solvent: Aceton/water
MS analysis
Polarity: Positive
Ionisation source: Prototype
Analyzer: Orbitrap
Pixel size: 5μm × 5μm
Annotation settings
m/z tolerance (ppm): 3
Analysis version: Original MSM
Pixel count: 469910
Imzml file size: 696.23 MB
Ibd file size: 814.11 MB |
|
Heparan sulfate (HS) is a linear polysaccharide that belongs to the class of compounds known as glycosaminoglycans (PMID: 24146040). It is found in all animal tissues and consists of repeating subunits of N-acetylglucosamine and glucuronic acid, and closely related in structure to heparin. It occurs as a proteoglycan (HSPG) in which two or three HS chains are attached to either cell surface components or the extracellular matrix (ECM), where they serve to reinforce cell adhesion (PMID: 27241222). HS synthesis starts with the transfer of xylose from UDP-xylose by the enzyme known as xylosyltransferase (XT) to specific serine residues within the protein core. Attachment of two galactose (Gal) residues by galactosyltransferases I and II (GalTI and GalTII) and glucuronic acid (GlcA) by the enzyme glucuronosyltransferase I (GlcATI) completes the formation of a tetrasaccharide linker. After attachment of the first N-acetylglucosamine (GlcNAc) residue by the enzyme known as GalNAc Transferase I (GalNAcT-I), elongation of the tetrasaccharide linker is continued by the stepwise addition of GlcA and GlcNAc residues. These are transferred from their respective UDP-sugar nucleotides. HS functions through binding to a variety of protein ligands including interferon gamma, Wnt, antithrombin III, interleukin 8, fibroblast growth factor, endostatin and others. HS thereby regulates a wide range of developmental signaling pathways such as the Wnt, Hedgehog, transforming growth factor-β, and fibroblast growth factor pathways (PMID: 15563523). Heparan sulfate plays a role in a number of biological activities, including developmental processes, angiogenesis, blood coagulation, abolishing detachment activity by GrB (Granzyme B) and tumour metastasis. A heteropolysaccharide that is similar in structure to heparin. It accumulates in individuals with mucopolysaccharidosis.