N-acetyltyrosine

(2S)-2-Acetylamino-3-(4-hydroxyphenyl)propanoic acid

Formula: C11H13NO4 (223.0845)
Chinese Name: N-乙酰基-DL-酪氨酸, N-乙酰-L-酪氨酸
BioDeep ID: BioDeep_00000017795 ( View LC/MS Profile)
SMILES: CC(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O



Found 13 Sample Hits

m/z Adducts Species Organ Scanning Sample
224.0919 [M+H]+
PPM:0.8
Marker Pen NA DESI (None)
3ul_0.8Mpa_RAW_20241016-PAPER PNMK - MEMI_test
Resolution: 30μm, 315x42

Description

By writing the four English letters “PNMK” on white paper with a marker pen, and then scanning with a DESI ion source to obtain the scanning result. The signal of the chemical substances on the marker pen used appears on the channel with an m/z value of 322.1918, 323.1953, 546.4010, and etc, from the single cell deconvolution sampling layer class_4. This test data was tested by chuxiaoping from PANOMIX’s R&D laboratory.

262.1858 [M+K]+
PPM:13.7
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito03_17 - MTBLS58
Resolution: 17μm, 208x108

Description

1 male adult wild-type rat was obtained from Inserm U1085 - Irset Research Institute (University of Rennes1, France). Animals were age 60 days and were reared under ad-lib conditions. Care and handling of all animals complied with EU directive 2010/63/EU on the protection of animals used for scientific purposes. The whole epididymis was excised from each animal immediately post-mortem, loosely wrapped rapidly in an aluminum foil and a 2.5% (w/v) carboxymethylcellulose (CMC) solution was poured to embed the epididymis to preserve their morphology. To remove air bubbles, the filled aluminum molds was gently freezed by depositing it on isopentane or dry ice, then on the nitrogen vapors and finally by progressively dipping the CMC/sample coated with aluminum foil into liquid nitrogen (or only flush with liquid nitrogen). Frozen tissues were stored at -80 °C until use to avoid degradation.

262.1859 [M+K]+
PPM:14.1
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito03_18 - MTBLS58
Resolution: 17μm, 208x104

Description

262.1865 [M+K]+
PPM:16.4
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_43 - MTBLS58
Resolution: 17μm, 298x106

Description

262.1867 [M+K]+
PPM:17.1
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_44 - MTBLS58
Resolution: 17μm, 299x111

Description

262.186 [M+K]+
PPM:14.5
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_46 - MTBLS58
Resolution: 17μm, 298x106

Description

262.187 [M+K]+
PPM:18.3
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_47 - MTBLS58
Resolution: 17μm, 301x111

Description

262.1862 [M+K]+
PPM:15.2
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_48 - MTBLS58
Resolution: 17μm, 294x107

Description

262.1859 [M+K]+
PPM:14.1
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito01_04 - MTBLS58
Resolution: 17μm, 178x91

Description

262.1859 [M+K]+
PPM:14.1
Rattus norvegicus normal MALDI (DHB)
epik_dhb_head_ito01_05 - MTBLS58
Resolution: 17μm, 183x105

Description

262.186 [M+K]+
PPM:14.5
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito03_14 - MTBLS58
Resolution: 17μm, 205x103

Description

241.1188 [M+NH4]+
PPM:2.2
Homo sapiens esophagus DESI ()
LNTO22_1_4 - MTBLS385
Resolution: 17μm, 82x80

Description

224.0903 [M+H]+
PPM:6.4
Homo sapiens esophagus DESI ()
LNTO29_16_3 - MTBLS385
Resolution: 17μm, 108x107

Description


N-Acetyl-L-tyrosine or N-Acetyltyrosine, belongs to the class of organic compounds known as N-acyl-alpha amino acids. N-acyl-alpha amino acids are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. N-Acetyltyrosine can also be classified as an alpha amino acid or a derivatized alpha amino acid. Technically, N-Acetyltyrosine is a biologically available N-terminal capped form of the proteinogenic alpha amino acid L-tyrosine. N-acetyl amino acids can be produced either via direct synthesis of specific N-acetyltransferases or via the proteolytic degradation of N-acetylated proteins by specific hydrolases. N-terminal acetylation of proteins is a widespread and highly conserved process in eukaryotes that is involved in protection and stability of proteins (PMID: 16465618). About 85\\\% of all human proteins and 68\\\% of all yeast proteins are acetylated at their N-terminus (PMID: 21750686). Several proteins from prokaryotes and archaea are also modified by N-terminal acetylation. The majority of eukaryotic N-terminal-acetylation reactions occur through N-acetyltransferase enzymes or NAT’s (PMID: 30054468). These enzymes consist of three main oligomeric complexes NatA, NatB, and NatC, which are composed of at least a unique catalytic subunit and one unique ribosomal anchor. The substrate specificities of different NAT enzymes are mainly determined by the identities of the first two N-terminal residues of the target protein. The human NatA complex co-translationally acetylates N-termini that bear a small amino acid (A, S, T, C, and occasionally V and G) (PMID: 30054468). NatA also exists in a monomeric state and can post-translationally acetylate acidic N-termini residues (D-, E-). NatB and NatC acetylate N-terminal methionine with further specificity determined by the identity of the second amino acid. N-acetylated amino acids, such as N-acetyltyrosine can be released by an N-acylpeptide hydrolase from peptides generated by proteolytic degradation (PMID: 16465618). In addition to the NAT enzymes and protein-based acetylation, N-acetylation of free tyrosine can also occur. Many N-acetylamino acids, including N-acetyltyrosine are classified as uremic toxins if present in high abundance in the serum or plasma (PMID: 26317986; PMID: 20613759). Uremic toxins are a diverse group of endogenously produced molecules that, if not properly cleared or eliminated by the kidneys, can cause kidney damage, cardiovascular disease and neurological deficits (PMID: 18287557). N-Acetyl-L-tyrosine, has also been associated with several inborn metabolic disorders including tyrosinemia I and aromatic l-amino acid decarboxylase deficiency. N-acetyltyrosine, is used in place of as a tyrosine precursor and administered as a source of nutritional support where oral nutrition is inadequate or cannot be tolerated (PMID: 14621123). N-acetyltyrosine has also been identified as an endogenous stress response factor. Under stress conditions, mitochondria release low levels of reactive oxygen species (ROS), which triggers a cytoprotective response, called "mitohormesis". N-acetyltyrosine has recently been identified as an intrinsic triggering factor of mitohormesis in stressed animals (PMID: 32118349). Interventions and small molecules, which promote formation of reactive oxygen species (ROS), have been shown to increase stress resistance and lifespan of different model organisms. These phenotypes occur only in response to low concentrations of ROS, while higher concentrations of ROS exert opposing effects. In this regard, a stress-dependent increase in N-acetyltyrosine was recently found to occur in insect larvae that had endured high temperatures (i.e. thermal stress). N-acetyltyrosine treatment has also been demonstrated to induce thermotolerance in several tested insect species. N-acetyltyrosine has been identified in the serum of humans as well as mice, and its concentration in mice was shown to be increased by heat s... Acetyltyrosine is a side chain reaction of tyrosine. It converts to tyrosine and then can be used in neurotransmitter treatment as a precursor of cathecholamine (http://www.neuroassist.com/). [HMDB] N-Acetyl-L-tyrosine originates from tyrosine through an AA acetylase, is associated with aromatic L-amino acid decarboxylase deficiency and tyrosinemia I.