Caftaric acid

Butanedioic acid, 2-[[(2E)-3-(3,4-dihydroxyphenyl)-1-oxo-2-propenyl]oxy]-3-hydroxy-, (2R,3R)- (9CI); Butanedioic acid, 2-[[3-(3,4-dihydroxyphenyl)-1-oxo-2-propenyl]oxy]-3-hydroxy-, [R-[R*,R*-(E)]]-; (2R,3R)-2-[[(2E)-3-(3,4-Dihydroxyphenyl)-1-oxo-2-propen-1-yl]oxy]-3-hydroxybutanedioic acid; trans-Caftaric acid

Formula: C13H12O9 (312.0481)
Chinese Name: 咖啡酰基酒石酸, 单咖啡酰酒石酸, 咖啡酸
BioDeep ID: BioDeep_00000017222 ( View LC/MS Profile)
SMILES: OC1=C(O)C=CC(/C=C/C(O[C@@H](C(O)=O)[C@@H](O)C(O)=O)=O)=C1



Found 5 Sample Hits

m/z Adducts Species Organ Scanning Sample
313.0521 [M+H]+
PPM:10.6
Mus musculus Liver MALDI (CHCA)
Salmonella_final_pos_recal - MTBLS2671
Resolution: 17μm, 691x430

Description

A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium. [dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671.

313.0508 [M+H]+
PPM:14.7
Homo sapiens colorectal adenocarcinoma DESI ()
439TopL, 409TopR, 429BottomL, 419BottomR-profile - MTBLS415
Resolution: 17μm, 157x136

Description

The human colorectal adenocarcinoma sample was excised during a surgical operation performed at the Imperial College Healthcare NHS Trust. The sample and procedures were carried out in accordance with ethical approval (14/EE/0024).

313.0518 [M+H]+
PPM:11.5
Homo sapiens esophagus DESI ()
TO31T - MTBLS385
Resolution: 75μm, 56x54

Description

313.0514 [M+H]+
PPM:12.8
Homo sapiens colorectal adenocarcinoma DESI ()
240TopL, 210TopR, 230BottomL, 220BottomR-centroid - MTBLS176
Resolution: 50μm, 142x141

Description

313.0515 [M+H]+
PPM:12.5
Homo sapiens colorectal adenocarcinoma DESI ()
160TopL,130TopR,150BottomL,140BottomR-centroid - MTBLS176
Resolution: 50μm, 142x136

Description


Caftaric acid is a hydroxycinnamic acid. Caftaric acid is a natural product found in Vitis rotundifolia, Vitis cinerea var. helleri, and other organisms with data available. Caftaric acid is a metabolite found in or produced by Saccharomyces cerevisiae. Caftaric acid is a non-flavanoid that impacts the color of white wine. Many believe this molecule is responsible for the yellowish-gold color seen in some whites wines[citation needed]. Aside from wine, it is abundantly present in raisins. Caftaric acid is a natural compound. Caftaric acid is a natural compound.