Theogallin

1,3,4-trihydroxy-5-(3,4,5-trihydroxybenzoyloxy)cyclohexane-1-carboxylic acid

Formula: C14H16O10 (344.0743)
Chinese Name: 3-没食子酰基奎宁酸
BioDeep ID: BioDeep_00000008347 ( View LC/MS Profile)
SMILES: c1(c(c(cc(c1)C(=O)O[C@@H]1C[C@](C[C@H]([C@H]1O)O)(O)C(=O)O)O)O)O



Found 14 Sample Hits

m/z Adducts Species Organ Scanning Sample
362.1061 [M+NH4]+
PPM:5.7
Homo sapiens Liver MALDI (DHB)
20171107_FIT4_DHBpos_p70_s50 - Rappez et al (2021) SpaceM reveals metabolic states of single cells
Resolution: 50μm, 70x70

Description

309.0603 [M+H-2H2O]+
PPM:0.6
Vitis vinifera Fruit MALDI (DHB)
grape_dhb_91_1 - Grape Database
Resolution: 50μm, 120x114

Description

Grape berries fruit, condition: Ripe

309.0603 [M+H-2H2O]+
PPM:0.6
Vitis vinifera Fruit MALDI (DHB)
grape_dhb_164_1 - Grape Database
Resolution: 17μm, 136x122

Description

Grape berries fruit, condition: Late

309.0604 [M+H-2H2O]+
PPM:0.3
Vitis vinifera Fruit MALDI (DHB)
grape_dhb_163_1 - Grape Database
Resolution: 17μm, 132x115

Description

Grape berries fruit, condition: Late

362.1058 [M+NH4]+
PPM:6.5
Mus musculus Lung MALDI (DHB)
image1 - MTBLS2075
Resolution: 40μm, 187x165

Description

Fig. 2 MALDI-MSI data from the same mouse lung tissue analyzed in Fig. 1. A: Optical image of the post-MSI, H&E-stained tissue section. B–D, F–G: Ion images of (B) m/z 796.6855 ([U13C-DPPC+Na]+), (C) m/z 756.5514 ([PC32:0+Na]+), (D) m/z 765.6079 ([D9-PC32:0+Na]+), (F) m/z 754.5359 ([PC32:1+Na]+), and (G) m/z 763.5923 ([D9-PC32:1+Na]+). E, H: Ratio images of (E) [D9-PC32:0+Na]+:[PC32:0+Na]+ and (H) [D9-PC32:1+Na]+:[PC32:1+Na]+. Part-per-million (ppm) mass errors are indicated in parentheses. All images were visualized using total-ion-current normalization and using hotspot removal (high quantile = 99%). DPPC = PC16:0/16:0. U13C-DPPC, universally 13C-labeled dipalmitoyl PC; PC, phosphatidylcholine; MSI, mass spectrometry imaging; H&E, hematoxylin and eosin. Fig 1-3, Fig S1-S3, S5

362.1061 [M+NH4]+
PPM:5.7
Mus musculus Lung MALDI (DHB)
image2 - MTBLS2075
Resolution: 40μm, 550x256

Description

Supplementary Figure S6. Ion distribution images for (a) [PC36:4+Na]+ (m/z 804.5514) and (b) [PC38:6+Na]+ (m/z 828.5515) obtained from mouse lung tissue collected 6 h after administration of D9- choline and U13C-DPPC–containing CHF5633. Parts-per-million (ppm) mass errors are indicated in parentheses. (c) Magnification of the boxed region in (a) with selected bronchiolar regions outlined in white boxes. (d) The corresponding H&E-stained tissue section with the same selected bronchiolar regions outlined in black boxes. These data demonstrate the co-localisation of the polyunsaturated lipids PC36:4 and PC38:6 with the bronchiolar regions of the lung. All MSI images were visualised using total ion current normalisation and hotspot removal (high quantile = 99%).

345.0772 [M+H]+
PPM:12.8
Posidonia oceanica root MALDI (CHCA)
20190822_MS1_A19r-19 - MTBLS1746
Resolution: 17μm, 303x309

Description

Seagrasses are among the most efficient sinks of carbon dioxide on Earth. While carbon sequestration in terrestrial plants is linked to the microorganisms living in their soils, the interactions of seagrasses with their rhizospheres are poorly understood. Here, we show that the seagrass, Posidonia oceanica excretes sugars, mainly sucrose, into its rhizosphere. These sugars accumulate to µM concentrations—nearly 80 times higher than previously observed in marine environments. This finding is unexpected as sugars are readily consumed by microorganisms. Our experiments indicated that under low oxygen conditions, phenolic compounds from P. oceanica inhibited microbial consumption of sucrose. Analyses of the rhizosphere community revealed that many microbes had the genes for degrading sucrose but these were only expressed by a few taxa that also expressed genes for degrading phenolics. Given that we observed high sucrose concentrations underneath three other species of marine plants, we predict that the presence of plant-produced phenolics under low oxygen conditions allows the accumulation of labile molecules across aquatic rhizospheres.

345.0758 [M+H]+
PPM:16.9
Posidonia oceanica root MALDI (CHCA)
20190613_MS1_A19r-18 - MTBLS1746
Resolution: 17μm, 246x264

Description

362.1093 [M+NH4]+
PPM:3.1
Posidonia oceanica root MALDI (CHCA)
20190613_MS1_A19r-18 - MTBLS1746
Resolution: 17μm, 246x264

Description

345.0752 [M+H]+
PPM:18.6
Posidonia oceanica root MALDI (CHCA)
MS1_20180404_PO_1200 - MTBLS1746
Resolution: 17μm, 193x208

Description

362.1079 [M+NH4]+
PPM:0.7
Mytilus edulis mantle MALDI (DHB)
20190201_MS38_Crassostrea_Mantle_350-1500_DHB_pos_A28_10um_270x210 - MTBLS2960
Resolution: 10μm, 270x210

Description

362.1075 [M+NH4]+
PPM:1.8
Mytilus edulis gill MALDI (DHB)
20190202_MS38_Crassostrea_Gill_350-1500_DHB_pos_A25_11um_305x210 - MTBLS2960
Resolution: 11μm, 305x210

Description

single cell layer class_4 is the gill structure cells, metabolite ion 534.2956 is the top representive ion of this type of cell

362.1072 [M+NH4]+
PPM:2.7
Mytilus edulis mantle MALDI (DHB)
20190216_MS38_Mytilus_mantle_350-1500_DHB_pos_A26_10um_275x210 - MTBLS2960
Resolution: 10μm, 275x210

Description

362.1043 [M+NH4]+
PPM:10.7
Homo sapiens esophagus DESI ()
LNTO22_1_5 - MTBLS385
Resolution: 75μm, 135x94

Description


Theogallin is found in blackcurrant. Theogallin is isolated from tea.