Acetoacetyl-CoA

{[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({hydroxy[(3R)-3-hydroxy-2,2-dimethyl-3-{[2-({2-[(3-oxobutanoyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}propoxy]phosphoryl}oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid

Formula: C25H40N7O18P3S (851.1363)
Chinese Name: 乙酰乙酰辅酶A, 乙酰乙酰基-COA
BioDeep ID: BioDeep_00000004415 ( View LC/MS Profile)
SMILES: CC(=O)CC(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP(O)(=O)OP(O)(=O)OC[C@H]1O[C@H]([C@H](O)[C@@H]1OP(O)(O)=O)N1C=NC2=C1N=CN=C2N



Found 18 Sample Hits

m/z Adducts Species Organ Scanning Sample
852.1411 [M+H]+
PPM:2.9
Mus musculus Urinary bladder MALDI (CHCA)
HR2MSI_mouse_urinary_bladder - S096 - PXD001283
Resolution: 10μm, 260x134

Description

Mass spectrometry imaging of phospholipids in mouse urinary bladder (imzML dataset)
The spatial distribution of phospholipids in a tissue section of mouse urinary bladder was analyzed by MALDI MS imaging at 10 micrometer pixel size with high mass resolution (using an LTQ Orbitrap mass spectrometer).

R, ö, mpp A, Guenther S, Schober Y, Schulz O, Takats Z, Kummer W, Spengler B, Histology by mass spectrometry: label-free tissue characterization obtained from high-accuracy bioanalytical imaging. Angew Chem Int Ed Engl, 49(22):3834-8(2010)

Fig. S2: Single ion images of compounds shown in Fig. 1A-B : (upper left to lower right) m/z = 743.5482 (unknown), m/z = 741.5307 (SM (16:0), [M+K]+), m/z = 798.5410 (PC (34:1), [M+K]+), m/z = 616.1767 (heme b, M+), m/z = 772.5253 (PC (32:0), [M+K]+).

Stability of determined mass values was in the range of +/- 1 ppm over 22 hours of measurement (Fig. S4), with a standard deviation of 0.56 ppm. Accuracy data were obtained during tissue scanning experiments by monitoring the mass signal at nominal mass 798. The internal lock mass function of the Orbitrap instrument was used for automatic calibration during imaging measurements, using the known matrix-related ion signals at m/z = 137.0233, m/z = 444.0925 and m/z = 716.1246.

834.1294 [M+H-H2O]+
PPM:4.4
Bathymodiolus epithelial host cells MALDI (DHB)
MPIBremen_Bputeoserpentis_MALDI-FISH_DHB_233x233pixel_3um_mz400-1200_240k@200 - MTBLS744
Resolution: 3μm, 233x233

Description

The Bathymodiolus puteoserpentis specimen used for high resolution AP-MALDI-MSI was collected during the RV Meteor M126 cruise in 2016 at the Logatchev hydrothermal vent field on the Mid-Atlantic Ridge. The specimen was retrieved with the MARUM-Quest remotely operated vehicle (ROV) at the Irina II vent site at 3038 m depth, 14°45’11.01”N and 44°58’43.98”W, and placed in an insulated container to prevent temperature changes during recovery. Gills were dissected from the mussel as soon as brought on board after ROV retrieval, submerged in precooled 2% w/v carboxymethyl cellulose gel (CMC, Mw ~ 700,000, Sigma-Aldrich Chemie GmbH) and snap-frozen in liquid N2. Samples were stored at -80 °C until use.
The CMC-embedded gills were cross-sectioned at 10 µm thickness with a cryostat (Leica CM3050 S, Leica Biosystems Nussloch GmbH) at a chamber temperature of -35 °C and object holder at -22 °C. Individual sections were thaw-mounted onto coated Polysine slides (Thermo Scientific) and subsequently frozen in the cryostat chamber. Slides with tissue sections were stored in slide containers with silica granules, to prevent air moisture condensation on the tissue upon removal from the freezer. Before AP-MALDI matrix application, the sample was warmed to room temperature under a dry atmosphere in a sealed slide container (LockMailer microscope slide jar, Sigma-Aldrich, Steinheim, Germany), filled with silica granules (Carl Roth GmbH) to avoid condensation on the cold glass slide. The sample glass slide was marked with white paint around the tissue for orientation during image acquisition as previously described[1]. Additionally, optical images of the tissue section were acquired with a digital microscope (VHX-5000 Series, Keyence, Neu-Isenburg, Germany) prior to matrix application. To apply the matrix, we used an ultrafine pneumatic sprayer system with N2 gas (SMALDIPrep, TransMIT GmbH, Giessen, Germany)[2], to deliver 100 μl of a 30 mg/ml solution of 2,5-dihydroxybenzoic acid (DHB; 98% 574 purity, Sigma-Aldrich, Steinheim, Germany) dissolved in acetone/water (1:1 v/v) containing 0.1% trifluoroacetic acid (TFA). To locate the field of view and facilitate laser focusing, a red marker was applied adjacent to the matrix-covered tissue section. Ref: [1] Kaltenpoth M, Strupat K, Svatoš A Linking metabolite production to taxonomic identity in environmental samples by (MA)LDI-FISH. ISME J. 2016 Feb;10(2):527-31. doi: 10.1038/ismej.2015.122. PMID:26172211 [2] Kompauer M, Heiles S, Spengler B. Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution. Nat Methods. 2017 Jan;14(1):90-96. doi: 10.1038/nmeth.4071. PMID:27842060
High-resolution AP-MALDI-MSI measurements were carried out at an experimental ion source setup [1][2], coupled to a Fourier transform orbital trapping mass spectrometer (Q Exactive HF, Thermo Fisher Scientific GmbH, Bremen, Germany). The sample was rastered with 233 x 233 laser spots with a step size of 3 µm without oversampling, resulting in an imaged area of 699 x 699 µm. AP-MALDI-MSI measurements were performed in positive mode for a mass detection range of 400–1200 Da and a mass resolving power of 240,000 (at 200 m/z). After AP-MALDI-MSI, the measured sample surface was recorded using a stereomicroscope (SMZ25, Nikon, Düssedorf, Germany). Ref: [1] Kompauer M, Heiles S, Spengler B. Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution. Nat Methods. 2017 Jan;14(1):90-96. doi: 10.1038/nmeth.4071. PMID:27842060 [2] Kompauer M, Heiles S, Spengler B. Autofocusing MALDI mass spectrometry imaging of tissue sections and 3D chemical topography of nonflat surfaces. Nat Methods. 2017 Dec;14(12):1156-1158. doi:10.1038/nmeth.4433. PMID:28945703

852.1405 [M+H]+
PPM:3.6
Bathymodiolus epithelial host cells MALDI (DHB)
MPIBremen_Bputeoserpentis_MALDI-FISH_DHB_233x233pixel_3um_mz400-1200_240k@200 - MTBLS744
Resolution: 3μm, 233x233

Description

The Bathymodiolus puteoserpentis specimen used for high resolution AP-MALDI-MSI was collected during the RV Meteor M126 cruise in 2016 at the Logatchev hydrothermal vent field on the Mid-Atlantic Ridge. The specimen was retrieved with the MARUM-Quest remotely operated vehicle (ROV) at the Irina II vent site at 3038 m depth, 14°45’11.01”N and 44°58’43.98”W, and placed in an insulated container to prevent temperature changes during recovery. Gills were dissected from the mussel as soon as brought on board after ROV retrieval, submerged in precooled 2% w/v carboxymethyl cellulose gel (CMC, Mw ~ 700,000, Sigma-Aldrich Chemie GmbH) and snap-frozen in liquid N2. Samples were stored at -80 °C until use.
The CMC-embedded gills were cross-sectioned at 10 µm thickness with a cryostat (Leica CM3050 S, Leica Biosystems Nussloch GmbH) at a chamber temperature of -35 °C and object holder at -22 °C. Individual sections were thaw-mounted onto coated Polysine slides (Thermo Scientific) and subsequently frozen in the cryostat chamber. Slides with tissue sections were stored in slide containers with silica granules, to prevent air moisture condensation on the tissue upon removal from the freezer. Before AP-MALDI matrix application, the sample was warmed to room temperature under a dry atmosphere in a sealed slide container (LockMailer microscope slide jar, Sigma-Aldrich, Steinheim, Germany), filled with silica granules (Carl Roth GmbH) to avoid condensation on the cold glass slide. The sample glass slide was marked with white paint around the tissue for orientation during image acquisition as previously described[1]. Additionally, optical images of the tissue section were acquired with a digital microscope (VHX-5000 Series, Keyence, Neu-Isenburg, Germany) prior to matrix application. To apply the matrix, we used an ultrafine pneumatic sprayer system with N2 gas (SMALDIPrep, TransMIT GmbH, Giessen, Germany)[2], to deliver 100 μl of a 30 mg/ml solution of 2,5-dihydroxybenzoic acid (DHB; 98% 574 purity, Sigma-Aldrich, Steinheim, Germany) dissolved in acetone/water (1:1 v/v) containing 0.1% trifluoroacetic acid (TFA). To locate the field of view and facilitate laser focusing, a red marker was applied adjacent to the matrix-covered tissue section. Ref: [1] Kaltenpoth M, Strupat K, Svatoš A Linking metabolite production to taxonomic identity in environmental samples by (MA)LDI-FISH. ISME J. 2016 Feb;10(2):527-31. doi: 10.1038/ismej.2015.122. PMID:26172211 [2] Kompauer M, Heiles S, Spengler B. Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution. Nat Methods. 2017 Jan;14(1):90-96. doi: 10.1038/nmeth.4071. PMID:27842060
High-resolution AP-MALDI-MSI measurements were carried out at an experimental ion source setup [1][2], coupled to a Fourier transform orbital trapping mass spectrometer (Q Exactive HF, Thermo Fisher Scientific GmbH, Bremen, Germany). The sample was rastered with 233 x 233 laser spots with a step size of 3 µm without oversampling, resulting in an imaged area of 699 x 699 µm. AP-MALDI-MSI measurements were performed in positive mode for a mass detection range of 400–1200 Da and a mass resolving power of 240,000 (at 200 m/z). After AP-MALDI-MSI, the measured sample surface was recorded using a stereomicroscope (SMZ25, Nikon, Düssedorf, Germany). Ref: [1] Kompauer M, Heiles S, Spengler B. Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution. Nat Methods. 2017 Jan;14(1):90-96. doi: 10.1038/nmeth.4071. PMID:27842060 [2] Kompauer M, Heiles S, Spengler B. Autofocusing MALDI mass spectrometry imaging of tissue sections and 3D chemical topography of nonflat surfaces. Nat Methods. 2017 Dec;14(12):1156-1158. doi:10.1038/nmeth.4433. PMID:28945703

834.1294 [M+H-H2O]+
PPM:4.4
Bathymodiolus epithelial host cells MALDI (DHB)
MPIMM_054_QE_P_BP_CF_Bputeoserpentis_MALDI-FISH8_Sl16_s1_DHB_233x233_3um - MTBLS744
Resolution: 3μm, 233x233

Description

852.1405 [M+H]+
PPM:3.6
Bathymodiolus epithelial host cells MALDI (DHB)
MPIMM_054_QE_P_BP_CF_Bputeoserpentis_MALDI-FISH8_Sl16_s1_DHB_233x233_3um - MTBLS744
Resolution: 3μm, 233x233

Description

834.1292 [M+H-H2O]+
PPM:4.6
Bathymodiolus epithelial host cells MALDI (DHB)
MPIMM_039_QE_P_BP_CF_Bputeoserpentis_MALDI-FISH8_Sl14_s1_DHB_233x233_3um - MTBLS744
Resolution: 3μm, 233x234

Description

852.1404 [M+H]+
PPM:3.8
Bathymodiolus epithelial host cells MALDI (DHB)
MPIMM_039_QE_P_BP_CF_Bputeoserpentis_MALDI-FISH8_Sl14_s1_DHB_233x233_3um - MTBLS744
Resolution: 3μm, 233x234

Description

834.1299 [M+H-H2O]+
PPM:3.8
Homo sapiens Liver MALDI (DHB)
20171107_FIT4_DHBpos_p70_s50 - Rappez et al (2021) SpaceM reveals metabolic states of single cells
Resolution: 50μm, 70x70

Description

851.1313 [M]+
PPM:5.3
Homo sapiens Liver MALDI (DHB)
20171107_FIT4_DHBpos_p70_s50 - Rappez et al (2021) SpaceM reveals metabolic states of single cells
Resolution: 50μm, 70x70

Description

852.1408 [M+H]+
PPM:3.3
Homo sapiens Liver MALDI (DHB)
20171107_FIT4_DHBpos_p70_s50 - Rappez et al (2021) SpaceM reveals metabolic states of single cells
Resolution: 50μm, 70x70

Description

834.1301 [M+H-H2O]+
PPM:3.5
Mytilus edulis mantle MALDI (DHB)
20190201_MS38_Crassostrea_Mantle_350-1500_DHB_pos_A28_10um_270x210 - MTBLS2960
Resolution: 10μm, 270x210

Description

852.141 [M+H]+
PPM:3.1
Mytilus edulis mantle MALDI (DHB)
20190201_MS38_Crassostrea_Mantle_350-1500_DHB_pos_A28_10um_270x210 - MTBLS2960
Resolution: 10μm, 270x210

Description

834.1294 [M+H-H2O]+
PPM:4.4
Mytilus edulis gill MALDI (DHB)
20190202_MS38_Crassostrea_Gill_350-1500_DHB_pos_A25_11um_305x210 - MTBLS2960
Resolution: 11μm, 305x210

Description

single cell layer class_4 is the gill structure cells, metabolite ion 534.2956 is the top representive ion of this type of cell

852.1402 [M+H]+
PPM:4
Mytilus edulis gill MALDI (DHB)
20190202_MS38_Crassostrea_Gill_350-1500_DHB_pos_A25_11um_305x210 - MTBLS2960
Resolution: 11μm, 305x210

Description

single cell layer class_4 is the gill structure cells, metabolite ion 534.2956 is the top representive ion of this type of cell

834.1301 [M+H-H2O]+
PPM:3.5
Mytilus edulis mantle MALDI (DHB)
20190216_MS38_Mytilus_mantle_350-1500_DHB_pos_A26_10um_275x210 - MTBLS2960
Resolution: 10μm, 275x210

Description

852.1408 [M+H]+
PPM:3.3
Mytilus edulis mantle MALDI (DHB)
20190216_MS38_Mytilus_mantle_350-1500_DHB_pos_A26_10um_275x210 - MTBLS2960
Resolution: 10μm, 275x210

Description

834.1298 [M+H-H2O]+
PPM:3.9
Drosophila melanogaster brain MALDI (DHB)
Drosophila18 - 2019-10-16_14h26m34s
Resolution: 5μm, 686x685

Description

Sample information Organism: Drosophila melanogaster Organism part: Brain Condition: Healthy Sample preparation Sample stabilisation: Frozen Tissue modification: Frozen MALDI matrix: 2,5-dihydroxybenzoic acid (DHB) MALDI matrix application: TM sprayer Solvent: Aceton/water MS analysis Polarity: Positive Ionisation source: Prototype Analyzer: Orbitrap Pixel size: 5μm × 5μm Annotation settings m/z tolerance (ppm): 3 Analysis version: Original MSM Pixel count: 469910 Imzml file size: 696.23 MB Ibd file size: 814.11 MB

852.1405 [M+H]+
PPM:3.6
Drosophila melanogaster brain MALDI (DHB)
Drosophila18 - 2019-10-16_14h26m34s
Resolution: 5μm, 686x685

Description

Sample information Organism: Drosophila melanogaster Organism part: Brain Condition: Healthy Sample preparation Sample stabilisation: Frozen Tissue modification: Frozen MALDI matrix: 2,5-dihydroxybenzoic acid (DHB) MALDI matrix application: TM sprayer Solvent: Aceton/water MS analysis Polarity: Positive Ionisation source: Prototype Analyzer: Orbitrap Pixel size: 5μm × 5μm Annotation settings m/z tolerance (ppm): 3 Analysis version: Original MSM Pixel count: 469910 Imzml file size: 696.23 MB Ibd file size: 814.11 MB


Acetoacetyl-CoA is an intermediate in the metabolism of Butanoate. It is a substrate for Succinyl-CoA:3-ketoacid-coenzyme A transferase 1 (mitochondrial), Hydroxymethylglutaryl-CoA synthase (mitochondrial), Short chain 3-hydroxyacyl-CoA dehydrogenase (mitochondrial), Trifunctional enzyme beta subunit (mitochondrial), Hydroxymethylglutaryl-CoA synthase (cytoplasmic), Peroxisomal bifunctional enzyme, Acetyl-CoA acetyltransferase (cytosolic), Acetyl-CoA acetyltransferase (mitochondrial), 3-hydroxyacyl-CoA dehydrogenase type II, Succinyl-CoA:3-ketoacid-coenzyme A transferase 2 (mitochondrial), 3-ketoacyl-CoA thiolase (mitochondrial), 3-ketoacyl-CoA thiolase (peroxisomal) and Trifunctional enzyme alpha subunit (mitochondrial). [HMDB]. Acetoacetyl-CoA is found in many foods, some of which are bog bilberry, lemon balm, pineapple, and pak choy. Acetoacetyl-CoA belongs to the class of organic compounds known as aminopiperidines. Aminopiperidines are compounds containing a piperidine that carries an amino group. Acetoacetyl-CoA is a strong basic compound (based on its pKa). In humans, acetoacetyl-CoA is involved in the metabolic disorder called the short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (HADH) pathway. Acetoacetyl-CoA is an intermediate in the metabolism of butanoate. It is a substrate for succinyl-CoA:3-ketoacid-coenzyme A transferase, hydroxymethylglutaryl-CoA synthase, short-chain 3-hydroxyacyl-CoA dehydrogenase, peroxisomal bifunctional enzyme, acetyl-CoA acetyltransferase, and 3-ketoacyl-CoA thiolase.