Uridine 5'-monophosphate
Formula: C9H13N2O9P (324.0359)
Chinese Name: 5-尿苷酸, 尿苷5-单磷酸
BioDeep ID: BioDeep_00000001701
( View LC/MS Profile)
SMILES: O=C(C=2)NC(=O)N(C2)[C@H](O1)[C@H](O)[C@H](O)[C@@H](COP(O)(O)=O)1
Found 43 Sample Hits
m/z | Adducts | Species | Organ | Scanning | Sample | |
---|---|---|---|---|---|---|
307.0301 | [M+H-H2O]+PPM:8.1 |
Marker Pen | NA | DESI (None) |
3ul_0.8Mpa_RAW_20241016-PAPER PNMK - MEMI_testResolution: 30μm, 315x42
By writing the four English letters “PNMK” on white paper with a marker pen, and then scanning with a DESI ion source to obtain the scanning result. The signal of the chemical substances on the marker pen used appears on the channel with an m/z value of |
|
307.033 | [M+H-H2O]+PPM:1.4 |
Plant | Root | MALDI (DHB) |
MPIMM_035_QE_P_PO_6pm - MPIMM_035_QE_P_PO_6pmResolution: 30μm, 165x170
|
|
324.0573 | [M-H2O+NH4]+PPM:5.6 |
Plant | Root | MALDI (DHB) |
MPIMM_035_QE_P_PO_6pm - MPIMM_035_QE_P_PO_6pmResolution: 30μm, 165x170
|
|
342.0712 | [M+NH4]+PPM:4.4 |
Plant | Root | MALDI (DHB) |
MPIMM_035_QE_P_PO_6pm - MPIMM_035_QE_P_PO_6pmResolution: 30μm, 165x170
|
|
347.0315 | [M+Na]+PPM:18.5 |
Plant | Root | MALDI (DHB) |
MPIMM_035_QE_P_PO_6pm - MPIMM_035_QE_P_PO_6pmResolution: 30μm, 165x170
|
|
324.0584 | [M-H2O+NH4]+PPM:2.2 |
Homo sapiens | Liver | MALDI (DHB) |
20171107_FIT4_DHBpos_p70_s50 - Rappez et al (2021) SpaceM reveals metabolic states of single cellsResolution: 50μm, 70x70
|
|
342.071 | [M+NH4]+PPM:3.8 |
Homo sapiens | Liver | MALDI (DHB) |
20171107_FIT4_DHBpos_p70_s50 - Rappez et al (2021) SpaceM reveals metabolic states of single cellsResolution: 50μm, 70x70
|
|
324.061 | [M-H2O+NH4]+PPM:5.8 |
Mus musculus | Left upper arm | MALDI (CHCA) |
357_l_total ion count - Limb defect imaging - Monash UniversityResolution: 50μm, 97x131
Diseased |
|
325.038 | [M+H]+PPM:15.8 |
Mus musculus | Left upper arm | MALDI (CHCA) |
357_l_total ion count - Limb defect imaging - Monash UniversityResolution: 50μm, 97x131
Diseased |
|
289.0253 | [M+H-2H2O]+PPM:11.4 |
Posidonia oceanica | root | MALDI (CHCA) |
20190614_MS1_A19r-20 - MTBLS1746Resolution: 17μm, 262x276
Seagrasses are one of the most efficient natural sinks of carbon dioxide (CO2) on Earth. Despite covering less than 0.1% of coastal regions, they have the capacity to bury up to 10% of marine organic matter and can bury the same amount of carbon 35 times faster than tropical rainforests. On land, the soil’s ability to sequestrate carbon is intimately linked to microbial metabolism. Despite the growing attention to the link between plant production, microbial communities, and the carbon cycle in terrestrial ecosystems, these processes remain enigmatic in the sea. Here, we show that seagrasses excrete organic sugars, namely in the form of sucrose, into their rhizospheres. Surprisingly, the microbial communities living underneath meadows do not fully use this sugar stock in their metabolism. Instead, sucrose piles up in the sediments to mM concentrations underneath multiple types of seagrass meadows. Sediment incubation experiments show that microbial communities living underneath a meadow use sucrose at low metabolic rates. Our metagenomic analyses revealed that the distinct community of microorganisms occurring underneath meadows is limited in their ability to degrade simple sugars, which allows these compounds to persist in the environment over relatively long periods of time. Our findings reveal how seagrasses form blue carbon stocks despite the relatively small area they occupy. Unfortunately, anthropogenic disturbances are threatening the long-term persistence of seagrass meadows. Given that these sediments contain a large stock of sugars that heterotopic bacteria can degrade, it is even more important to protect these ecosystems from degradation. |
|
307.036 | [M+H-H2O]+PPM:11.1 |
Posidonia oceanica | root | MALDI (CHCA) |
20190614_MS1_A19r-20 - MTBLS1746Resolution: 17μm, 262x276
Seagrasses are one of the most efficient natural sinks of carbon dioxide (CO2) on Earth. Despite covering less than 0.1% of coastal regions, they have the capacity to bury up to 10% of marine organic matter and can bury the same amount of carbon 35 times faster than tropical rainforests. On land, the soil’s ability to sequestrate carbon is intimately linked to microbial metabolism. Despite the growing attention to the link between plant production, microbial communities, and the carbon cycle in terrestrial ecosystems, these processes remain enigmatic in the sea. Here, we show that seagrasses excrete organic sugars, namely in the form of sucrose, into their rhizospheres. Surprisingly, the microbial communities living underneath meadows do not fully use this sugar stock in their metabolism. Instead, sucrose piles up in the sediments to mM concentrations underneath multiple types of seagrass meadows. Sediment incubation experiments show that microbial communities living underneath a meadow use sucrose at low metabolic rates. Our metagenomic analyses revealed that the distinct community of microorganisms occurring underneath meadows is limited in their ability to degrade simple sugars, which allows these compounds to persist in the environment over relatively long periods of time. Our findings reveal how seagrasses form blue carbon stocks despite the relatively small area they occupy. Unfortunately, anthropogenic disturbances are threatening the long-term persistence of seagrass meadows. Given that these sediments contain a large stock of sugars that heterotopic bacteria can degrade, it is even more important to protect these ecosystems from degradation. |
|
324.0586 | [M-H2O+NH4]+PPM:1.6 |
Posidonia oceanica | root | MALDI (CHCA) |
20190614_MS1_A19r-20 - MTBLS1746Resolution: 17μm, 262x276
Seagrasses are one of the most efficient natural sinks of carbon dioxide (CO2) on Earth. Despite covering less than 0.1% of coastal regions, they have the capacity to bury up to 10% of marine organic matter and can bury the same amount of carbon 35 times faster than tropical rainforests. On land, the soil’s ability to sequestrate carbon is intimately linked to microbial metabolism. Despite the growing attention to the link between plant production, microbial communities, and the carbon cycle in terrestrial ecosystems, these processes remain enigmatic in the sea. Here, we show that seagrasses excrete organic sugars, namely in the form of sucrose, into their rhizospheres. Surprisingly, the microbial communities living underneath meadows do not fully use this sugar stock in their metabolism. Instead, sucrose piles up in the sediments to mM concentrations underneath multiple types of seagrass meadows. Sediment incubation experiments show that microbial communities living underneath a meadow use sucrose at low metabolic rates. Our metagenomic analyses revealed that the distinct community of microorganisms occurring underneath meadows is limited in their ability to degrade simple sugars, which allows these compounds to persist in the environment over relatively long periods of time. Our findings reveal how seagrasses form blue carbon stocks despite the relatively small area they occupy. Unfortunately, anthropogenic disturbances are threatening the long-term persistence of seagrass meadows. Given that these sediments contain a large stock of sugars that heterotopic bacteria can degrade, it is even more important to protect these ecosystems from degradation. |
|
342.0708 | [M+NH4]+PPM:3.2 |
Posidonia oceanica | root | MALDI (CHCA) |
20190614_MS1_A19r-20 - MTBLS1746Resolution: 17μm, 262x276
Seagrasses are one of the most efficient natural sinks of carbon dioxide (CO2) on Earth. Despite covering less than 0.1% of coastal regions, they have the capacity to bury up to 10% of marine organic matter and can bury the same amount of carbon 35 times faster than tropical rainforests. On land, the soil’s ability to sequestrate carbon is intimately linked to microbial metabolism. Despite the growing attention to the link between plant production, microbial communities, and the carbon cycle in terrestrial ecosystems, these processes remain enigmatic in the sea. Here, we show that seagrasses excrete organic sugars, namely in the form of sucrose, into their rhizospheres. Surprisingly, the microbial communities living underneath meadows do not fully use this sugar stock in their metabolism. Instead, sucrose piles up in the sediments to mM concentrations underneath multiple types of seagrass meadows. Sediment incubation experiments show that microbial communities living underneath a meadow use sucrose at low metabolic rates. Our metagenomic analyses revealed that the distinct community of microorganisms occurring underneath meadows is limited in their ability to degrade simple sugars, which allows these compounds to persist in the environment over relatively long periods of time. Our findings reveal how seagrasses form blue carbon stocks despite the relatively small area they occupy. Unfortunately, anthropogenic disturbances are threatening the long-term persistence of seagrass meadows. Given that these sediments contain a large stock of sugars that heterotopic bacteria can degrade, it is even more important to protect these ecosystems from degradation. |
|
347.0314 | [M+Na]+PPM:18.2 |
Posidonia oceanica | root | MALDI (CHCA) |
20190614_MS1_A19r-20 - MTBLS1746Resolution: 17μm, 262x276
Seagrasses are one of the most efficient natural sinks of carbon dioxide (CO2) on Earth. Despite covering less than 0.1% of coastal regions, they have the capacity to bury up to 10% of marine organic matter and can bury the same amount of carbon 35 times faster than tropical rainforests. On land, the soil’s ability to sequestrate carbon is intimately linked to microbial metabolism. Despite the growing attention to the link between plant production, microbial communities, and the carbon cycle in terrestrial ecosystems, these processes remain enigmatic in the sea. Here, we show that seagrasses excrete organic sugars, namely in the form of sucrose, into their rhizospheres. Surprisingly, the microbial communities living underneath meadows do not fully use this sugar stock in their metabolism. Instead, sucrose piles up in the sediments to mM concentrations underneath multiple types of seagrass meadows. Sediment incubation experiments show that microbial communities living underneath a meadow use sucrose at low metabolic rates. Our metagenomic analyses revealed that the distinct community of microorganisms occurring underneath meadows is limited in their ability to degrade simple sugars, which allows these compounds to persist in the environment over relatively long periods of time. Our findings reveal how seagrasses form blue carbon stocks despite the relatively small area they occupy. Unfortunately, anthropogenic disturbances are threatening the long-term persistence of seagrass meadows. Given that these sediments contain a large stock of sugars that heterotopic bacteria can degrade, it is even more important to protect these ecosystems from degradation. |
|
324.0564 | [M-H2O+NH4]+PPM:8.4 |
Posidonia oceanica | root | MALDI (CHCA) |
20190822_MS1_A19r-19 - MTBLS1746Resolution: 17μm, 303x309
Seagrasses are among the most efficient sinks of carbon dioxide on Earth. While carbon sequestration in terrestrial plants is linked to the microorganisms living in their soils, the interactions of seagrasses with their rhizospheres are poorly understood. Here, we show that the seagrass, Posidonia oceanica excretes sugars, mainly sucrose, into its rhizosphere. These sugars accumulate to µM concentrations—nearly 80 times higher than previously observed in marine environments. This finding is unexpected as sugars are readily consumed by microorganisms. Our experiments indicated that under low oxygen conditions, phenolic compounds from P. oceanica inhibited microbial consumption of sucrose. Analyses of the rhizosphere community revealed that many microbes had the genes for degrading sucrose but these were only expressed by a few taxa that also expressed genes for degrading phenolics. Given that we observed high sucrose concentrations underneath three other species of marine plants, we predict that the presence of plant-produced phenolics under low oxygen conditions allows the accumulation of labile molecules across aquatic rhizospheres. |
|
342.0689 | [M+NH4]+PPM:2.3 |
Posidonia oceanica | root | MALDI (CHCA) |
20190822_MS1_A19r-19 - MTBLS1746Resolution: 17μm, 303x309
Seagrasses are among the most efficient sinks of carbon dioxide on Earth. While carbon sequestration in terrestrial plants is linked to the microorganisms living in their soils, the interactions of seagrasses with their rhizospheres are poorly understood. Here, we show that the seagrass, Posidonia oceanica excretes sugars, mainly sucrose, into its rhizosphere. These sugars accumulate to µM concentrations—nearly 80 times higher than previously observed in marine environments. This finding is unexpected as sugars are readily consumed by microorganisms. Our experiments indicated that under low oxygen conditions, phenolic compounds from P. oceanica inhibited microbial consumption of sucrose. Analyses of the rhizosphere community revealed that many microbes had the genes for degrading sucrose but these were only expressed by a few taxa that also expressed genes for degrading phenolics. Given that we observed high sucrose concentrations underneath three other species of marine plants, we predict that the presence of plant-produced phenolics under low oxygen conditions allows the accumulation of labile molecules across aquatic rhizospheres. |
|
289.0262 | [M+H-2H2O]+PPM:14.5 |
Posidonia oceanica | root | MALDI (CHCA) |
20190613_MS1_A19r-18 - MTBLS1746Resolution: 17μm, 246x264
|
|
307.0364 | [M+H-H2O]+PPM:12.5 |
Posidonia oceanica | root | MALDI (CHCA) |
20190613_MS1_A19r-18 - MTBLS1746Resolution: 17μm, 246x264
|
|
324.0585 | [M-H2O+NH4]+PPM:1.9 |
Posidonia oceanica | root | MALDI (CHCA) |
20190613_MS1_A19r-18 - MTBLS1746Resolution: 17μm, 246x264
|
|
342.0713 | [M+NH4]+PPM:4.7 |
Posidonia oceanica | root | MALDI (CHCA) |
20190613_MS1_A19r-18 - MTBLS1746Resolution: 17μm, 246x264
|
|
347.0319 | [M+Na]+PPM:19.6 |
Posidonia oceanica | root | MALDI (CHCA) |
20190613_MS1_A19r-18 - MTBLS1746Resolution: 17μm, 246x264
|
|
342.0711 | [M+NH4]+PPM:4.1 |
Posidonia oceanica | root | MALDI (CHCA) |
20190828_MS1_A19r-22 - MTBLS1746Resolution: 17μm, 292x279
|
|
307.0367 | [M+H-H2O]+PPM:13.4 |
Posidonia oceanica | root | MALDI (CHCA) |
MS1_20180404_PO_1200 - MTBLS1746Resolution: 17μm, 193x208
|
|
324.0569 | [M-H2O+NH4]+PPM:6.9 |
Posidonia oceanica | root | MALDI (CHCA) |
MS1_20180404_PO_1200 - MTBLS1746Resolution: 17μm, 193x208
|
|
342.0686 | [M+NH4]+PPM:3.2 |
Posidonia oceanica | root | MALDI (CHCA) |
MS1_20180404_PO_1200 - MTBLS1746Resolution: 17μm, 193x208
|
|
347.0317 | [M+Na]+PPM:19.1 |
Posidonia oceanica | root | MALDI (CHCA) |
MS1_20180404_PO_1200 - MTBLS1746Resolution: 17μm, 193x208
|
|
307.0312 | [M+H-H2O]+PPM:4.5 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
80TopL, 50TopR, 70BottomL, 60BottomR-profile - MTBLS415Resolution: 17μm, 137x136
The human colorectal adenocarcinoma sample was excised during a surgical operation performed at the Imperial College Healthcare NHS Trust. The sample and procedures were carried out in accordance with ethical approval (14/EE/0024). |
|
324.0319 | [M]+PPM:10.5 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
80TopL, 50TopR, 70BottomL, 60BottomR-profile - MTBLS415Resolution: 17μm, 137x136
The human colorectal adenocarcinoma sample was excised during a surgical operation performed at the Imperial College Healthcare NHS Trust. The sample and procedures were carried out in accordance with ethical approval (14/EE/0024). |
|
363.1383 | [M+K]+PPM:12.9 |
Mytilus edulis | mantle | MALDI (DHB) |
20190201_MS38_Crassostrea_Mantle_350-1500_DHB_pos_A28_10um_270x210 - MTBLS2960Resolution: 10μm, 270x210
|
|
363.1379 | [M+K]+PPM:11.8 |
Mytilus edulis | gill | MALDI (DHB) |
20190202_MS38_Crassostrea_Gill_350-1500_DHB_pos_A25_11um_305x210 - MTBLS2960Resolution: 11μm, 305x210
single cell layer |
|
363.1381 | [M+K]+PPM:12.3 |
Mytilus edulis | mantle | MALDI (DHB) |
20190216_MS38_Mytilus_mantle_350-1500_DHB_pos_A26_10um_275x210 - MTBLS2960Resolution: 10μm, 275x210
|
|
307.0332 | [M+H-H2O]+PPM:2 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
520TopL, 490TopR, 510BottomL, 500BottomR-profile - MTBLS415Resolution: 17μm, 147x131
The human colorectal adenocarcinoma sample was excised during a surgical operation performed at the Imperial College Healthcare NHS Trust. The sample and procedures were carried out in accordance with ethical approval (14/EE/0024). |
|
307.0343 | [M+H-H2O]+PPM:5.6 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
439TopL, 409TopR, 429BottomL, 419BottomR-profile - MTBLS415Resolution: 17μm, 157x136
The human colorectal adenocarcinoma sample was excised during a surgical operation performed at the Imperial College Healthcare NHS Trust. The sample and procedures were carried out in accordance with ethical approval (14/EE/0024). |
|
307.0297 | [M+H-H2O]+PPM:9.4 |
Homo sapiens | NA | DESI () |
160TopL,130TopR,150BottomL,140BottomR-profile - MTBLS415Resolution: 17μm, 142x136
|
|
307.0348 | [M+H-H2O]+PPM:7.2 |
Homo sapiens | esophagus | DESI () |
TO31T - MTBLS385Resolution: 75μm, 56x54
|
|
307.0354 | [M+H-H2O]+PPM:9.2 |
Homo sapiens | esophagus | DESI () |
TO29T - MTBLS385Resolution: 75μm, 56x48
|
|
307.0345 | [M+H-H2O]+PPM:6.3 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
240TopL, 210TopR, 230BottomL, 220BottomR-centroid - MTBLS176Resolution: 50μm, 142x141
|
|
307.0348 | [M+H-H2O]+PPM:7.2 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
200TopL, 170TopR, 190BottomL, 180BottomR-centroid - MTBLS176Resolution: 50μm, 132x126
|
|
307.0346 | [M+H-H2O]+PPM:6.6 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
160TopL,130TopR,150BottomL,140BottomR-centroid - MTBLS176Resolution: 50μm, 142x136
|
|
307.0347 | [M+H-H2O]+PPM:6.9 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
120TopL, 90TopR, 110BottomL, 100BottomR-centroid - MTBLS176Resolution: 50μm, 132x136
|
|
324.0321 | [M]+PPM:9.9 |
Homo sapiens | colorectal adenocarcinoma | DESI () |
120TopL, 90TopR, 110BottomL, 100BottomR-centroid - MTBLS176Resolution: 50μm, 132x136
|
|
324.0608 | [M-H2O+NH4]+PPM:5.2 |
Drosophila melanogaster | brain | MALDI (DHB) |
Drosophila18 - 2019-10-16_14h26m34sResolution: 5μm, 686x685
Sample information
Organism: Drosophila melanogaster
Organism part: Brain
Condition: Healthy
Sample preparation
Sample stabilisation: Frozen
Tissue modification: Frozen
MALDI matrix: 2,5-dihydroxybenzoic acid (DHB)
MALDI matrix application: TM sprayer
Solvent: Aceton/water
MS analysis
Polarity: Positive
Ionisation source: Prototype
Analyzer: Orbitrap
Pixel size: 5μm × 5μm
Annotation settings
m/z tolerance (ppm): 3
Analysis version: Original MSM
Pixel count: 469910
Imzml file size: 696.23 MB
Ibd file size: 814.11 MB |
|
342.0712 | [M+NH4]+PPM:4.4 |
Drosophila melanogaster | brain | MALDI (DHB) |
Drosophila18 - 2019-10-16_14h26m34sResolution: 5μm, 686x685
Sample information
Organism: Drosophila melanogaster
Organism part: Brain
Condition: Healthy
Sample preparation
Sample stabilisation: Frozen
Tissue modification: Frozen
MALDI matrix: 2,5-dihydroxybenzoic acid (DHB)
MALDI matrix application: TM sprayer
Solvent: Aceton/water
MS analysis
Polarity: Positive
Ionisation source: Prototype
Analyzer: Orbitrap
Pixel size: 5μm × 5μm
Annotation settings
m/z tolerance (ppm): 3
Analysis version: Original MSM
Pixel count: 469910
Imzml file size: 696.23 MB
Ibd file size: 814.11 MB |
|
Uridine 5-monophosphate (UMP), also known as uridylic acid or uridylate, belongs to the class of organic compounds known as pyrimidine ribonucleoside monophosphates. These are pyrimidine ribobucleotides with monophosphate group linked to the ribose moiety. UMP consists of a phosphate group, a pentose sugar ribose, and the nucleobase uracil; hence, it is a ribonucleotide monophosphate. Uridine 5-monophosphate exists in all living species, ranging from bacteria to plants to humans. UMP is a nucleotide that is primarily used as a monomer in RNA biosynthesis. Uridine monophosphate is formed from Orotidine 5-monophosphate (orotidylic acid) in a decarboxylation reaction catalyzed by the enzyme orotidylate decarboxylase. Within humans, uridine 5-monophosphate participates in a number of enzymatic reactions. In particular, uridine 5-monophosphate can be converted into uridine 5-diphosphate through the action of the enzyme UMP-CMP kinase. In addition, uridine 5-monophosphate can be biosynthesized from uridine 5-diphosphate through its interaction with the enzyme soluble calcium-activated nucleotidase 1. In brain research studies, uridine monophosphate has been used as a convenient delivery compound for uridine. Uridine is present in many foods, mainly in the form of RNA. Non-phosphorylated uridine is not bioavailable beyond first-pass metabolism. In a study, gerbils fed a combination of uridine monophosphate, choline, and docosahexaenoic acid (DHA) were found to have significantly improved performance in running mazes over those not fed the supplements, implying an increase in cognitive function (PMID: 18606862). 5′-UMP. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-97-9 (retrieved 2024-07-02) (CAS RN: 58-97-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Uridine 5'-monophosphate (5'-?Uridylic acid), a monophosphate form of UTP, can be acquired either from a de novo pathway or degradation products of nucleotides and nucleic acids in vivo and is a major nucleotide analogue in mammalian milk[1]. Uridine 5'-monophosphate (5'-?Uridylic acid), a monophosphate form of UTP, can be acquired either from a de novo pathway or degradation products of nucleotides and nucleic acids in vivo and is a major nucleotide analogue in mammalian milk[1]. Uridine 5'-monophosphate (5'-?Uridylic acid), a monophosphate form of UTP, can be acquired either from a de novo pathway or degradation products of nucleotides and nucleic acids in vivo and is a major nucleotide analogue in mammalian milk[1].