Griseofulvin
Formula: C17H17ClO6 (352.0714)
Chinese Name: 灰黄霉素
BioDeep ID: BioDeep_00000001594
( View LC/MS Profile)
SMILES: COC1=CC(OC)=C(Cl)C2=C1C(=O)[C@]1(O2)[C@H](C)CC(=O)C=C1OC
Found 2 Sample Hits
| m/z | Adducts | Species | Organ | Scanning | Sample | |
|---|---|---|---|---|---|---|
| 353.0805 | [M+H]+PPM:5.3 |
Mus musculus | Liver | MALDI (CHCA) |
Salmonella_final_pos_recal - MTBLS2671Resolution: 17μm, 691x430
A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium.
[dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671. |
|
| 353.0803 | [M+H]+PPM:4.7 |
Mytilus edulis | mantle | MALDI (DHB) |
20190201_MS38_Crassostrea_Mantle_350-1500_DHB_pos_A28_10um_270x210 - MTBLS2960Resolution: 10μm, 270x210
|
|
Griseofulvin is only found in individuals that have used or taken this drug. It is an antifungal antibiotic. Griseofulvin may be given by mouth in the treatment of tinea infections. [PubChem]Griseofulvin is fungistatic, however the exact mechanism by which it inhibits the growth of dermatophytes is not clear. It is thought to inhibit fungal cell mitosis and nuclear acid synthesis. It also binds to and interferes with the function of spindle and cytoplasmic microtubules by binding to alpha and beta tubulin. It binds to keratin in human cells, then once it reaches the fungal site of action, it binds to fungal microtubes thus altering the fungal process of mitosis. D - Dermatologicals > D01 - Antifungals for dermatological use > D01B - Antifungals for systemic use > D01BA - Antifungals for systemic use D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AA - Antibiotics D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent Griseofulvin(Gris-PEG; Grifulvin) is a spirocyclic fungal natural product used in treatment of fungal dermatophytes; Antifungal drug.
