4-Hydroxycoumarin

4-Hydroxy Coumarin;4-Coumarinol;4-Hydroxy-2H-chromen-2-one

Formula: C9H6O3 (162.0317)
Chinese Name: 4-羟基香豆精, 4-羟基香豆素
BioDeep ID: BioDeep_00000000445 ( View LC/MS Profile)
SMILES: C1=CC=C2C(=C1)C(=CC(=O)O2)O



Found 15 Sample Hits

m/z Adducts Species Organ Scanning Sample
163.0391 [M+H]+
PPM:0.8
Marker Pen NA DESI (None)
3ul_0.8Mpa_RAW_20241016-PAPER PNMK - MEMI_test
Resolution: 30μm, 315x42

Description

By writing the four English letters “PNMK” on white paper with a marker pen, and then scanning with a DESI ion source to obtain the scanning result. The signal of the chemical substances on the marker pen used appears on the channel with an m/z value of 322.1918, 323.1953, 546.4010, and etc, from the single cell deconvolution sampling layer class_4. This test data was tested by chuxiaoping from PANOMIX’s R&D laboratory.

163.0387 [M+H]+
PPM:1.7
Posidonia oceanica root MALDI (CHCA)
20190614_MS1_A19r-20 - MTBLS1746
Resolution: 17μm, 262x276

Description

Seagrasses are one of the most efficient natural sinks of carbon dioxide (CO2) on Earth. Despite covering less than 0.1% of coastal regions, they have the capacity to bury up to 10% of marine organic matter and can bury the same amount of carbon 35 times faster than tropical rainforests. On land, the soil’s ability to sequestrate carbon is intimately linked to microbial metabolism. Despite the growing attention to the link between plant production, microbial communities, and the carbon cycle in terrestrial ecosystems, these processes remain enigmatic in the sea. Here, we show that seagrasses excrete organic sugars, namely in the form of sucrose, into their rhizospheres. Surprisingly, the microbial communities living underneath meadows do not fully use this sugar stock in their metabolism. Instead, sucrose piles up in the sediments to mM concentrations underneath multiple types of seagrass meadows. Sediment incubation experiments show that microbial communities living underneath a meadow use sucrose at low metabolic rates. Our metagenomic analyses revealed that the distinct community of microorganisms occurring underneath meadows is limited in their ability to degrade simple sugars, which allows these compounds to persist in the environment over relatively long periods of time. Our findings reveal how seagrasses form blue carbon stocks despite the relatively small area they occupy. Unfortunately, anthropogenic disturbances are threatening the long-term persistence of seagrass meadows. Given that these sediments contain a large stock of sugars that heterotopic bacteria can degrade, it is even more important to protect these ecosystems from degradation.

163.039 [M+H]+
PPM:0.2
Posidonia oceanica root MALDI (CHCA)
20190613_MS1_A19r-18 - MTBLS1746
Resolution: 17μm, 246x264

Description

163.0387 [M+H]+
PPM:1.7
Posidonia oceanica root MALDI (CHCA)
20190828_MS1_A19r-22 - MTBLS1746
Resolution: 17μm, 292x279

Description

163.0387 [M+H]+
PPM:1.7
Posidonia oceanica root MALDI (CHCA)
MS1_20180404_PO_1200 - MTBLS1746
Resolution: 17μm, 193x208

Description

162.0317 [M]+
PPM:3.4
Homo sapiens esophagus DESI ()
LNTO22_1_3 - MTBLS385
Resolution: 75μm, 121x68

Description

163.0395 [M+H]+
PPM:3.3
Homo sapiens esophagus DESI ()
LNTO22_1_3 - MTBLS385
Resolution: 75μm, 121x68

Description

201.1286 [M+K]+
PPM:4.2
Homo sapiens esophagus DESI ()
LNTO22_1_3 - MTBLS385
Resolution: 75μm, 121x68

Description

163.0395 [M+H]+
PPM:3.3
Mus musculus Liver MALDI (CHCA)
Salmonella_final_pos_recal - MTBLS2671
Resolution: 17μm, 691x430

Description

A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium. [dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671.

162.0319 [M]+
PPM:4.7
Homo sapiens esophagus DESI ()
LNTO22_1_5 - MTBLS385
Resolution: 75μm, 135x94

Description

163.04 [M+H]+
PPM:6.3
Homo sapiens esophagus DESI ()
LNTO22_1_5 - MTBLS385
Resolution: 75μm, 135x94

Description

163.0395 [M+H]+
PPM:3.3
Homo sapiens esophagus DESI ()
LNTO22_1_7 - MTBLS385
Resolution: 75μm, 69x54

Description

162.0316 [M]+
PPM:2.8
Homo sapiens esophagus DESI ()
LNTO22_1_8 - MTBLS385
Resolution: 75μm, 69x61

Description

163.0395 [M+H]+
PPM:3.3
Homo sapiens esophagus DESI ()
LNTO22_1_8 - MTBLS385
Resolution: 75μm, 69x61

Description

163.0404 [M+H]+
PPM:8.8
Homo sapiens esophagus DESI ()
LNTO22_2_1 - MTBLS385
Resolution: 75μm, 89x88

Description


4-hydroxycoumarin is a hydroxycoumarin that is coumarin in which the hydrogen at position 4 is replaced by a hydroxy group. It is a conjugate acid of a 4-hydroxycoumarin(1-). 4-Hydroxycoumarin is a natural product found in Vitis vinifera, Ruta graveolens, and Apis cerana with data available. CONFIDENCE Reference Standard (Level 1); NaToxAq - Natural Toxins and Drinking Water Quality - From Source to Tap (https://natoxaq.ku.dk) D006401 - Hematologic Agents > D000925 - Anticoagulants > D015110 - 4-Hydroxycoumarins CONFIDENCE standard compound; INTERNAL_ID 2312 4-Hydroxycoumarin, a coumarin derivative, is one of the most versatile heterocyclic scaffolds and is frequently applied in the synthesis of various organic compounds. 4-Hydroxycoumarin possesses both electrophilic and nucleophilic properties. 4-Hydroxycoumarin derivatives are employed as the anticoagulant, antibacterial, antifungal, antiviral, antitumor, antiprotozoal, insecticidal, antimycobacterial, antimutagenic, antioxidant, anti-inflammatory agents, HIV protease inhibitors and tyrosine kinase inhibitors[1]. 4-Hydroxycoumarin, a coumarin derivative, is one of the most versatile heterocyclic scaffolds and is frequently applied in the synthesis of various organic compounds. 4-Hydroxycoumarin possesses both electrophilic and nucleophilic properties. 4-Hydroxycoumarin derivatives are employed as the anticoagulant, antibacterial, antifungal, antiviral, antitumor, antiprotozoal, insecticidal, antimycobacterial, antimutagenic, antioxidant, anti-inflammatory agents, HIV protease inhibitors and tyrosine kinase inhibitors[1].