M/Z: 811.611


Hit 2 annotations:  PA(20:3(5Z,8Z,11Z)/24:0)_[M+H]+; PC(18:0/20:3)_[M]+


在BioDeep NovoCell知识数据库中,参考离子总共被划分为4个级别。
  • Confirmed: 这个参考离子已经通过手动审计得到确认和验证。
  • Reliable: 这个参考离子可能在特定的解剖组织环境中高度保守。
  • Unreliable: 这个参考离子具有较高的排名价值,但缺乏可重复性。
  • Unavailable: 由于排名价值低且缺乏可重复性,这个参考离子不应用于注释。

Found 30 Reference Ions Near m/z 811.611
NovoCell ID m/z Mass Window Metabolite Ranking Anatomy Context
MSI_000006279 Reliable 811.6033 811.6031 ~ 811.6035
MzDiff: 1.9 ppm
SM(d20:1/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) (BioDeep_00000215725)
Formula: C45H83N2O8P (810.5887)
13.97 (100%) Rattus norvegicus
[UBERON:0004358] caput epididymis
MSI_000006488 Reliable 811.6151 811.615 ~ 811.6152
MzDiff: 0.9 ppm
PA(20:3(5Z,8Z,11Z)/24:0) (BioDeep_00000107498)
Formula: C47H87O8P (810.6138)
7.23 (58%) Rattus norvegicus
[UBERON:0004358] caput epididymis
MSI_000060993 Unreliable 811.6028 811.6026 ~ 811.603
MzDiff: 1.6 ppm
SM(d20:1/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) (BioDeep_00000215725)
Formula: C45H83N2O8P (810.5887)
3.09 (67%) Mus musculus
[UBERON:0002421] hippocampal formation
MSI_000061481 Unavailable 811.6054 811.6052 ~ 811.6059
MzDiff: 3.0 ppm
SM(d20:1/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) (BioDeep_00000215725)
Formula: C45H83N2O8P (810.5887)
-1.05 (100%) Mus musculus
[UBERON:0000956] cerebral cortex
MSI_000021860 Unreliable 811.6013 811.6013 ~ 811.6013
MzDiff: none
SM(d20:1/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) (BioDeep_00000215725)
Formula: C45H83N2O8P (810.5887)
0.58 (100%) Mus musculus
[UBERON:0001499] muscle of arm
MSI_000062658 Unreliable 811.6055 811.6052 ~ 811.6059
MzDiff: 3.0 ppm
SM(d20:1/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) (BioDeep_00000215725)
Formula: C45H83N2O8P (810.5887)
2.15 (100%) Mus musculus
[UBERON:0002421] hippocampal formation
MSI_000001044 Unavailable 811.6011 811.6011 ~ 811.6011
MzDiff: none
Not Annotated -0.28 (0%) Mus musculus
[UBERON:0001224] renal pelvis
MSI_000001847 Unavailable 811.6011 811.6011 ~ 811.6011
MzDiff: none
Not Annotated -0.65 (0%) Mus musculus
[UBERON:0001225] cortex of kidney
MSI_000002304 Unavailable 811.6011 811.6011 ~ 811.6011
MzDiff: none
Not Annotated -0.64 (0%) Mus musculus
[UBERON:0001293] outer medulla of kidney
MSI_000022912 Unreliable 811.6013 811.6013 ~ 811.6013
MzDiff: none
SM(d20:1/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) (BioDeep_00000215725)
Formula: C45H83N2O8P (810.5887)
0.85 (100%) Mus musculus
[UBERON:0004250] upper arm bone
MSI_000002614 Unreliable 811.602 811.602 ~ 811.602
MzDiff: none
PC(18:0/20:3) (BioDeep_00000029334)
Formula: C46H86NO8P (811.6091)
0.07 (100%) Rattus norvegicus
[UBERON:0001950] neocortex
MSI_000003278 Unreliable 811.602 811.602 ~ 811.602
MzDiff: none
PC(18:0/20:3) (BioDeep_00000029334)
Formula: C46H86NO8P (811.6091)
0.06 (100%) Rattus norvegicus
[UBERON:0002037] cerebellum
MSI_000004886 Unreliable 811.602 811.602 ~ 811.602
MzDiff: none
PC(18:0/20:3) (BioDeep_00000029334)
Formula: C46H86NO8P (811.6091)
0.81 (100%) Rattus norvegicus
[UBERON:0002298] brainstem
MSI_000005971 Unavailable 811.602 811.602 ~ 811.602
MzDiff: none
PC(18:0/20:3) (BioDeep_00000029334)
Formula: C46H86NO8P (811.6091)
-1.12 (100%) Rattus norvegicus
[UBERON:0002435] striatum
MSI_000058919 Unavailable 811.6028 811.6028 ~ 811.6028
MzDiff: none
PC(18:0/20:3) (BioDeep_00000029334)
Formula: C46H86NO8P (811.6091)
-0.55 (100%) Mus musculus
[UBERON:0001950] neocortex
MSI_000059384 Unreliable 811.6028 811.6028 ~ 811.6028
MzDiff: none
PC(18:0/20:3) (BioDeep_00000029334)
Formula: C46H86NO8P (811.6091)
1.15 (100%) Mus musculus
[UBERON:0002298] brainstem
MSI_000044243 Unreliable 811.6029 811.6029 ~ 811.6029
MzDiff: none
SM(d20:1/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) (BioDeep_00000215725)
Formula: C45H83N2O8P (810.5887)
0.53 (100%) Rattus norvegicus
[UBERON:0002264] olfactory bulb
MSI_000010136 Unavailable 811.6032 811.6032 ~ 811.6032
MzDiff: none
SM(d20:1/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) (BioDeep_00000215725)
Formula: C45H83N2O8P (810.5887)
-0.43 (100%) Bathymodiolus
[UBERON:0009120] gill filament
MSI_000028334 Unreliable 811.6045 811.6045 ~ 811.6045
MzDiff: none
SM(d20:1/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) (BioDeep_00000215725)
Formula: C45H83N2O8P (810.5887)
1.36 (100%) Macropus giganteus
[UBERON:0001891] midbrain
MSI_000029821 Unavailable 811.6045 811.6045 ~ 811.6045
MzDiff: none
SM(d20:1/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) (BioDeep_00000215725)
Formula: C45H83N2O8P (810.5887)
-0.27 (100%) Macropus giganteus
[UBERON:0002336] corpus callosum
MSI_000030844 Unreliable 811.6045 811.6045 ~ 811.6045
MzDiff: none
SM(d20:1/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) (BioDeep_00000215725)
Formula: C45H83N2O8P (810.5887)
0.82 (100%) Macropus giganteus
[UBERON:0003027] cingulate cortex
MSI_000031731 Unavailable 811.6045 811.6045 ~ 811.6045
MzDiff: none
SM(d20:1/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) (BioDeep_00000215725)
Formula: C45H83N2O8P (810.5887)
-0.04 (100%) Macropus giganteus
[UBERON:0006093] precuneus cortex
MSI_000062200 Unreliable 811.6059 811.6059 ~ 811.6059
MzDiff: none
SM(d20:1/20:4(6Z,8E,10E,14Z)-2OH(5S,12R)) (BioDeep_00000215725)
Formula: C45H83N2O8P (810.5887)
0.18 (100%) Mus musculus
[UBERON:0001950] neocortex
MSI_000028561 Unreliable 811.6157 811.6157 ~ 811.6157
MzDiff: none
PA(20:3(5Z,8Z,11Z)/24:0) (BioDeep_00000107498)
Formula: C47H87O8P (810.6138)
0.88 (100%) Macropus giganteus
[UBERON:0001891] midbrain
MSI_000029638 Unreliable 811.6157 811.6157 ~ 811.6157
MzDiff: none
PA(20:3(5Z,8Z,11Z)/24:0) (BioDeep_00000107498)
Formula: C47H87O8P (810.6138)
0.07 (100%) Macropus giganteus
[UBERON:0002336] corpus callosum
MSI_000030765 Unreliable 811.6157 811.6157 ~ 811.6157
MzDiff: none
PA(20:3(5Z,8Z,11Z)/24:0) (BioDeep_00000107498)
Formula: C47H87O8P (810.6138)
1.05 (100%) Macropus giganteus
[UBERON:0003027] cingulate cortex
MSI_000031661 Unreliable 811.6157 811.6157 ~ 811.6157
MzDiff: none
PA(20:3(5Z,8Z,11Z)/24:0) (BioDeep_00000107498)
Formula: C47H87O8P (810.6138)
0.07 (100%) Macropus giganteus
[UBERON:0006093] precuneus cortex
MSI_000061602 Unavailable 811.6207 811.6207 ~ 811.6207
MzDiff: none
PC(18:0/20:3) (BioDeep_00000029334)
Formula: C46H86NO8P (811.6091)
-0.35 (100%) Mus musculus
[UBERON:0000956] cerebral cortex
MSI_000062355 Unavailable 811.6207 811.6207 ~ 811.6207
MzDiff: none
PC(18:0/20:3) (BioDeep_00000029334)
Formula: C46H86NO8P (811.6091)
-0.35 (100%) Mus musculus
[UBERON:0001950] neocortex
MSI_000062788 Unavailable 811.6207 811.6207 ~ 811.6207
MzDiff: none
PC(18:0/20:3) (BioDeep_00000029334)
Formula: C46H86NO8P (811.6091)
-0.35 (100%) Mus musculus
[UBERON:0002421] hippocampal formation

Found 6 Sample Hits
Metabolite Species Sample
PA(20:3(5Z,8Z,11Z)/24:0)

Formula: C47H87O8P (810.6138)
Adducts: [M+H]+ (Ppm: 16)
Mus musculus (Lung)
image1
Resolution: 40μm, 187x165

Description

Fig. 2 MALDI-MSI data from the same mouse lung tissue analyzed in Fig. 1. A: Optical image of the post-MSI, H&E-stained tissue section. B–D, F–G: Ion images of (B) m/z 796.6855 ([U13C-DPPC+Na]+), (C) m/z 756.5514 ([PC32:0+Na]+), (D) m/z 765.6079 ([D9-PC32:0+Na]+), (F) m/z 754.5359 ([PC32:1+Na]+), and (G) m/z 763.5923 ([D9-PC32:1+Na]+). E, H: Ratio images of (E) [D9-PC32:0+Na]+:[PC32:0+Na]+ and (H) [D9-PC32:1+Na]+:[PC32:1+Na]+. Part-per-million (ppm) mass errors are indicated in parentheses. All images were visualized using total-ion-current normalization and using hotspot removal (high quantile = 99%). DPPC = PC16:0/16:0. U13C-DPPC, universally 13C-labeled dipalmitoyl PC; PC, phosphatidylcholine; MSI, mass spectrometry imaging; H&E, hematoxylin and eosin. Fig 1-3, Fig S1-S3, S5

PA(20:3(5Z,8Z,11Z)/24:0)

Formula: C47H87O8P (810.6138)
Adducts: [M+H]+ (Ppm: 17.4)
Mus musculus (Left upper arm)
357_l_total ion count
Resolution: 50μm, 97x131

Description

Diseased

PA(20:3(5Z,8Z,11Z)/24:0)

Formula: C47H87O8P (810.6138)
Adducts: [M+H]+ (Ppm: 12.4)
Mus musculus (Lung)
image2
Resolution: 40μm, 550x256

Description

Supplementary Figure S6. Ion distribution images for (a) [PC36:4+Na]+ (m/z 804.5514) and (b) [PC38:6+Na]+ (m/z 828.5515) obtained from mouse lung tissue collected 6 h after administration of D9- choline and U13C-DPPC–containing CHF5633. Parts-per-million (ppm) mass errors are indicated in parentheses. (c) Magnification of the boxed region in (a) with selected bronchiolar regions outlined in white boxes. (d) The corresponding H&E-stained tissue section with the same selected bronchiolar regions outlined in black boxes. These data demonstrate the co-localisation of the polyunsaturated lipids PC36:4 and PC38:6 with the bronchiolar regions of the lung. All MSI images were visualised using total ion current normalisation and hotspot removal (high quantile = 99%).

PA(20:3(5Z,8Z,11Z)/24:0)

Formula: C47H87O8P (810.6138)
Adducts: [M+H]+ (Ppm: 6.7)
Macropus giganteus (Brain)
170321_kangaroobrain-dan3-pos_maxof50.0_med1
Resolution: 50μm, 81x50

Description

Sample information Organism: Macropus giganteus (kangaroo) Organism part: Brain Condition: Wildtype Sample growth conditions: Wild

PA(20:3(5Z,8Z,11Z)/24:0)

Formula: C47H87O8P (810.6138)
Adducts: [M+H]+ (Ppm: 13.7)
Rattus norvegicus (Brain)
2018June2820180628_brain_POS_3s2_validated
Resolution: 17μm, 213x141

Description

All MSI experiments were performed on a hybrid linear ion trap 21 T FT-ICR mass spectrometer at the National High Magnetic Field Laboratory (NHMFL) at Florida State University (Tallahassee, FL). A Velos Pro linear ion trap (Thermo Scientific, San Jose, CA) was combined with NHMFL-designed external linear quadrupole ion trap, quadrupole ion transfer optics and a novel dynamically harmonized ICR cell, which is operated at 7.5 V trapping potential[1]. Briefly, the cell uses 120° cell segments for ion excitation and detection, for improved excitation electric field, detection sensitivity and reduced third harmonic signals[2][3]. The commercial ion source and stacked ring ion guide were replaced with an elevated-pressure MALDI ion source incorporating a dual-ion funnel interface (Spectroglyph LLC, Kennewick, WA) as has been described previously[4]. Voltages within the funnels were 625 kHz, 150 V peak-to-peak (first, high-pressure ion funnel) and 1.2 MHz, 90 V peak-to-peak (second, low-pressure ion funnel). An electric field gradient of ∼10 V/cm was maintained within the dual-funnel system, with a gradient of 100 V/cm between the sample and the funnel inlet. The system was equipped with a Q-switched, frequency-tripled Nd:YLF laser emitting 349 nm light (Explorer One, Spectra Physics, Mountain View, CA). The laser was operated at a repetition rate of 1 kHz and pulse energy of ∼1.2 μJ. Pressure within the ion source was set to 10 mbar in the first ion funnel and 2 mbar in the second ion funnel. MALDI stage motion was synchronized with ion accumulation using the Velos trigger signal indicating commencement of the ion trap injection event, as previously described[4]. The mass spectrometer was operated with an ion injection time of 250 ms and automatic gain control (AGC) was turned off. A transient duration of 3.1 s was used for ultrahigh mass resolving power analyses, resulting in a total time of 4s per pixel. Spectra were obtained in both positive and negative mode, at 100 μm spatial resolution. Total number of pixels per brain section were approximately 22 000 and 24 h of experimental time. A Predator data station was used for ion excitation and detection[5]. Refs: [1] Hendrickson CL, Quinn JP, Kaiser NK, Smith DF, Blakney GT, Chen T, Marshall AG, Weisbrod CR, Beu SC. 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer: A National Resource for Ultrahigh Resolution Mass Analysis. J Am Soc Mass Spectrom. 2015 Sep;26(9):1626-32. doi:10.1007/s13361-015-1182-2. Epub 2015 Jun 20. PMID:26091892. [2] Hendrickson CL, Beu SC, Blakney GT, Kaiser NK, McIntosh DG, Quinn JP, Marshall AG. In Optimized cell geometry for Fourier transform ion cyclotron resonance mass spectrometry, Proceedings of the 57th ASMS Conference on Mass Spectrometry and Allied Topics, Philadelphia, PA, May 31 to June 4; Philadelphia, PA, 2009. [3] Chen T, Beu SC, Kaiser NK, Hendrickson CL. Note: Optimized circuit for excitation and detection with one pair of electrodes for improved Fourier transform ion cyclotron resonance mass spectrometry. Rev Sci Instrum. 2014 Jun;85(6):066107. doi:10.1063/1.4883179. PMID:24985871. [4] Belov ME, Ellis SR, Dilillo M, Paine MRL, Danielson WF, Anderson GA, de Graaf EL, Eijkel GB, Heeren RMA, McDonnell LA. Design and Performance of a Novel Interface for Combined Matrix-Assisted Laser Desorption Ionization at Elevated Pressure and Electrospray Ionization with Orbitrap Mass Spectrometry. Anal Chem. 2017 Jul 18;89(14):7493-7501. doi:10.1021/acs.analchem.7b01168. Epub 2017 Jun 28. PMID:28613836. [5] Blakney GT, Hendrickson CL, Marshall AG. Predator data station: A fast data acquisition system for advanced FT-ICR MS experiments. Int. J. Mass Spectrom. 2011;306 (2-3), 246- 252. doi:10.1016/j.ijms.2011.03.009.

PC(18:0/20:3)

Formula: C46H86NO8P (811.6091)
Adducts: [M]+ (Ppm: 7.3)
Mus musculus (Liver)
Salmonella_final_pos_recal
Resolution: 17μm, 691x430

Description

A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium. [dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671.