Amiodarone HCl

Amiodarone hydrochloride

Formula: C25H30ClI2NO3 (681.0004)
Chinese Name: 胺碘酮盐酸盐
BioDeep ID: BioDeep_00000399012 ( View LC/MS Profile)
SMILES: CCCCC1=C(C2=CC=CC=C2O1)C(=O)C3=CC(=C(C(=C3)I)OCCN(CC)CC)I.Cl



Found 19 Sample Hits

m/z Adducts Species Organ Scanning Sample
682.0029 [M+H]+
PPM:7
Rattus norvegicus Brain MALDI (CHCA)
Spectroswiss - sol_2x_br_2 - 2016-09-29_07h40m45s
Resolution: 17μm, 488x193

Description

703.9846 [M+Na]+
PPM:7.1
Rattus norvegicus Brain MALDI (CHCA)
Spectroswiss - sol_2x_br_2 - 2016-09-29_07h40m45s
Resolution: 17μm, 488x193

Description

681.0235 [M-H2O+NH4]+
PPM:0.2
Vitis vinifera Fruit MALDI (DHB)
grape_dhb_91_1 - Grape Database
Resolution: 50μm, 120x114

Description

Grape berries fruit, condition: Ripe

699.0252 [M+NH4]+
PPM:12.9
Vitis vinifera Fruit MALDI (DHB)
grape_dhb_91_1 - Grape Database
Resolution: 50μm, 120x114

Description

Grape berries fruit, condition: Ripe

681.0233 [M-H2O+NH4]+
PPM:0.5
Vitis vinifera Fruit MALDI (DHB)
grape_dhb_164_1 - Grape Database
Resolution: 17μm, 136x122

Description

Grape berries fruit, condition: Late

699.0252 [M+NH4]+
PPM:12.9
Vitis vinifera Fruit MALDI (DHB)
grape_dhb_164_1 - Grape Database
Resolution: 17μm, 136x122

Description

Grape berries fruit, condition: Late

681.0235 [M-H2O+NH4]+
PPM:0.2
Vitis vinifera Fruit MALDI (DHB)
grape_dhb_163_1 - Grape Database
Resolution: 17μm, 132x115

Description

Grape berries fruit, condition: Late

699.0252 [M+NH4]+
PPM:12.9
Vitis vinifera Fruit MALDI (DHB)
grape_dhb_163_1 - Grape Database
Resolution: 17μm, 132x115

Description

Grape berries fruit, condition: Late

681.01 [M]+
PPM:15
Posidonia oceanica root MALDI (CHCA)
20190614_MS1_A19r-20 - MTBLS1746
Resolution: 17μm, 262x276

Description

Seagrasses are one of the most efficient natural sinks of carbon dioxide (CO2) on Earth. Despite covering less than 0.1% of coastal regions, they have the capacity to bury up to 10% of marine organic matter and can bury the same amount of carbon 35 times faster than tropical rainforests. On land, the soil’s ability to sequestrate carbon is intimately linked to microbial metabolism. Despite the growing attention to the link between plant production, microbial communities, and the carbon cycle in terrestrial ecosystems, these processes remain enigmatic in the sea. Here, we show that seagrasses excrete organic sugars, namely in the form of sucrose, into their rhizospheres. Surprisingly, the microbial communities living underneath meadows do not fully use this sugar stock in their metabolism. Instead, sucrose piles up in the sediments to mM concentrations underneath multiple types of seagrass meadows. Sediment incubation experiments show that microbial communities living underneath a meadow use sucrose at low metabolic rates. Our metagenomic analyses revealed that the distinct community of microorganisms occurring underneath meadows is limited in their ability to degrade simple sugars, which allows these compounds to persist in the environment over relatively long periods of time. Our findings reveal how seagrasses form blue carbon stocks despite the relatively small area they occupy. Unfortunately, anthropogenic disturbances are threatening the long-term persistence of seagrass meadows. Given that these sediments contain a large stock of sugars that heterotopic bacteria can degrade, it is even more important to protect these ecosystems from degradation.

681.0224 [M-H2O+NH4]+
PPM:1.8
Posidonia oceanica root MALDI (CHCA)
20190614_MS1_A19r-20 - MTBLS1746
Resolution: 17μm, 262x276

Description

Seagrasses are one of the most efficient natural sinks of carbon dioxide (CO2) on Earth. Despite covering less than 0.1% of coastal regions, they have the capacity to bury up to 10% of marine organic matter and can bury the same amount of carbon 35 times faster than tropical rainforests. On land, the soil’s ability to sequestrate carbon is intimately linked to microbial metabolism. Despite the growing attention to the link between plant production, microbial communities, and the carbon cycle in terrestrial ecosystems, these processes remain enigmatic in the sea. Here, we show that seagrasses excrete organic sugars, namely in the form of sucrose, into their rhizospheres. Surprisingly, the microbial communities living underneath meadows do not fully use this sugar stock in their metabolism. Instead, sucrose piles up in the sediments to mM concentrations underneath multiple types of seagrass meadows. Sediment incubation experiments show that microbial communities living underneath a meadow use sucrose at low metabolic rates. Our metagenomic analyses revealed that the distinct community of microorganisms occurring underneath meadows is limited in their ability to degrade simple sugars, which allows these compounds to persist in the environment over relatively long periods of time. Our findings reveal how seagrasses form blue carbon stocks despite the relatively small area they occupy. Unfortunately, anthropogenic disturbances are threatening the long-term persistence of seagrass meadows. Given that these sediments contain a large stock of sugars that heterotopic bacteria can degrade, it is even more important to protect these ecosystems from degradation.

681.011 [M]+
PPM:16.4
Posidonia oceanica root MALDI (CHCA)
MS1_20180404_PO_1200 - MTBLS1746
Resolution: 17μm, 193x208

Description

681.0233 [M-H2O+NH4]+
PPM:0.5
Posidonia oceanica root MALDI (CHCA)
MS1_20180404_PO_1200 - MTBLS1746
Resolution: 17μm, 193x208

Description

645.9847 [M+H-2H2O]+
PPM:2.8
Mytilus edulis mantle MALDI (DHB)
20190201_MS38_Crassostrea_Mantle_350-1500_DHB_pos_A28_10um_270x210 - MTBLS2960
Resolution: 10μm, 270x210

Description

699.0314 [M+NH4]+
PPM:4
Mytilus edulis mantle MALDI (DHB)
20190201_MS38_Crassostrea_Mantle_350-1500_DHB_pos_A28_10um_270x210 - MTBLS2960
Resolution: 10μm, 270x210

Description

703.9829 [M+Na]+
PPM:9.5
Mytilus edulis mantle MALDI (DHB)
20190201_MS38_Crassostrea_Mantle_350-1500_DHB_pos_A28_10um_270x210 - MTBLS2960
Resolution: 10μm, 270x210

Description

699.0309 [M+NH4]+
PPM:4.7
Mytilus edulis gill MALDI (DHB)
20190202_MS38_Crassostrea_Gill_350-1500_DHB_pos_A25_11um_305x210 - MTBLS2960
Resolution: 11μm, 305x210

Description

single cell layer class_4 is the gill structure cells, metabolite ion 534.2956 is the top representive ion of this type of cell

703.9822 [M+Na]+
PPM:10.5
Mytilus edulis gill MALDI (DHB)
20190202_MS38_Crassostrea_Gill_350-1500_DHB_pos_A25_11um_305x210 - MTBLS2960
Resolution: 11μm, 305x210

Description

single cell layer class_4 is the gill structure cells, metabolite ion 534.2956 is the top representive ion of this type of cell

645.9843 [M+H-2H2O]+
PPM:3.4
Mytilus edulis mantle MALDI (DHB)
20190216_MS38_Mytilus_mantle_350-1500_DHB_pos_A26_10um_275x210 - MTBLS2960
Resolution: 10μm, 275x210

Description

703.9822 [M+Na]+
PPM:10.5
Mytilus edulis mantle MALDI (DHB)
20190216_MS38_Mytilus_mantle_350-1500_DHB_pos_A26_10um_275x210 - MTBLS2960
Resolution: 10μm, 275x210

Description


D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065609 - Cytochrome P-450 CYP1A2 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065688 - Cytochrome P-450 CYP2C9 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065690 - Cytochrome P-450 CYP2D6 Inhibitors D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065692 - Cytochrome P-450 CYP3A Inhibitors C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D026902 - Potassium Channel Blockers D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker