LacCer(d18:1/22:0)

N-[(2S,3R,4E)-1-{[(2R,3R,4R,5S,6R)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3-hydroxyoctadec-4-en-2-yl]docosanamide

Formula: C52H99NO13 (945.7116)
Chinese Name:
BioDeep ID: BioDeep_00000032131 ( View LC/MS Profile)
SMILES: [H][C@@](CO[C@@H]1O[C@H](CO)[C@@H](O[C@]2([H])O[C@H](CO)[C@H](O)[C@H](O)[C@H]2O)[C@H](O)[C@H]1O)(NC(=O)CCCCCCCCCCCCCCCCCCCCC)[C@H](O)\C=C\CCCCCCCCCCCCC



Found 27 Sample Hits

m/z Adducts Species Organ Scanning Sample
945.7337 [M-H2O+NH4]+
PPM:1.2
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito03_17 - MTBLS58
Resolution: 17μm, 208x108

Description

1 male adult wild-type rat was obtained from Inserm U1085 - Irset Research Institute (University of Rennes1, France). Animals were age 60 days and were reared under ad-lib conditions. Care and handling of all animals complied with EU directive 2010/63/EU on the protection of animals used for scientific purposes. The whole epididymis was excised from each animal immediately post-mortem, loosely wrapped rapidly in an aluminum foil and a 2.5% (w/v) carboxymethylcellulose (CMC) solution was poured to embed the epididymis to preserve their morphology. To remove air bubbles, the filled aluminum molds was gently freezed by depositing it on isopentane or dry ice, then on the nitrogen vapors and finally by progressively dipping the CMC/sample coated with aluminum foil into liquid nitrogen (or only flush with liquid nitrogen). Frozen tissues were stored at -80 °C until use to avoid degradation.

946.7348 [M+H]+
PPM:16.8
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito03_17 - MTBLS58
Resolution: 17μm, 208x108

Description

1 male adult wild-type rat was obtained from Inserm U1085 - Irset Research Institute (University of Rennes1, France). Animals were age 60 days and were reared under ad-lib conditions. Care and handling of all animals complied with EU directive 2010/63/EU on the protection of animals used for scientific purposes. The whole epididymis was excised from each animal immediately post-mortem, loosely wrapped rapidly in an aluminum foil and a 2.5% (w/v) carboxymethylcellulose (CMC) solution was poured to embed the epididymis to preserve their morphology. To remove air bubbles, the filled aluminum molds was gently freezed by depositing it on isopentane or dry ice, then on the nitrogen vapors and finally by progressively dipping the CMC/sample coated with aluminum foil into liquid nitrogen (or only flush with liquid nitrogen). Frozen tissues were stored at -80 °C until use to avoid degradation.

945.7336 [M-H2O+NH4]+
PPM:1.3
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito03_18 - MTBLS58
Resolution: 17μm, 208x104

Description

946.7347 [M+H]+
PPM:16.7
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito03_18 - MTBLS58
Resolution: 17μm, 208x104

Description

945.7332 [M-H2O+NH4]+
PPM:1.8
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_43 - MTBLS58
Resolution: 17μm, 298x106

Description

946.7343 [M+H]+
PPM:16.3
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_43 - MTBLS58
Resolution: 17μm, 298x106

Description

945.7333 [M-H2O+NH4]+
PPM:1.7
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_44 - MTBLS58
Resolution: 17μm, 299x111

Description

946.7342 [M+H]+
PPM:16.2
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_44 - MTBLS58
Resolution: 17μm, 299x111

Description

945.7327 [M-H2O+NH4]+
PPM:2.3
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_46 - MTBLS58
Resolution: 17μm, 298x106

Description

946.7337 [M+H]+
PPM:15.7
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_46 - MTBLS58
Resolution: 17μm, 298x106

Description

945.7325 [M-H2O+NH4]+
PPM:2.5
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_47 - MTBLS58
Resolution: 17μm, 301x111

Description

946.7337 [M+H]+
PPM:15.7
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_47 - MTBLS58
Resolution: 17μm, 301x111

Description

945.7325 [M-H2O+NH4]+
PPM:2.5
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_48 - MTBLS58
Resolution: 17μm, 294x107

Description

946.7334 [M+H]+
PPM:15.3
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_48 - MTBLS58
Resolution: 17μm, 294x107

Description

945.733 [M-H2O+NH4]+
PPM:2
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito01_04 - MTBLS58
Resolution: 17μm, 178x91

Description

946.734 [M+H]+
PPM:16
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito01_04 - MTBLS58
Resolution: 17μm, 178x91

Description

945.7328 [M-H2O+NH4]+
PPM:2.2
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito01_03 - MTBLS58
Resolution: 17μm, 159x110

Description

946.7338 [M+H]+
PPM:15.8
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito01_03 - MTBLS58
Resolution: 17μm, 159x110

Description

945.7331 [M-H2O+NH4]+
PPM:1.9
Rattus norvegicus normal MALDI (DHB)
epik_dhb_head_ito01_05 - MTBLS58
Resolution: 17μm, 183x105

Description

946.7342 [M+H]+
PPM:16.2
Rattus norvegicus normal MALDI (DHB)
epik_dhb_head_ito01_05 - MTBLS58
Resolution: 17μm, 183x105

Description

945.7332 [M-H2O+NH4]+
PPM:1.8
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito01_06 - MTBLS58
Resolution: 17μm, 183x103

Description

946.7342 [M+H]+
PPM:16.2
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito01_06 - MTBLS58
Resolution: 17μm, 183x103

Description

945.7331 [M-H2O+NH4]+
PPM:1.9
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito03_14 - MTBLS58
Resolution: 17μm, 205x103

Description

946.7339 [M+H]+
PPM:15.9
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito03_14 - MTBLS58
Resolution: 17μm, 205x103

Description

910.7113 [M+H-2H2O]+
PPM:14.9
Mus musculus Lung MALDI (DHB)
image1 - MTBLS2075
Resolution: 40μm, 187x165

Description

Fig. 2 MALDI-MSI data from the same mouse lung tissue analyzed in Fig. 1. A: Optical image of the post-MSI, H&E-stained tissue section. B–D, F–G: Ion images of (B) m/z 796.6855 ([U13C-DPPC+Na]+), (C) m/z 756.5514 ([PC32:0+Na]+), (D) m/z 765.6079 ([D9-PC32:0+Na]+), (F) m/z 754.5359 ([PC32:1+Na]+), and (G) m/z 763.5923 ([D9-PC32:1+Na]+). E, H: Ratio images of (E) [D9-PC32:0+Na]+:[PC32:0+Na]+ and (H) [D9-PC32:1+Na]+:[PC32:1+Na]+. Part-per-million (ppm) mass errors are indicated in parentheses. All images were visualized using total-ion-current normalization and using hotspot removal (high quantile = 99%). DPPC = PC16:0/16:0. U13C-DPPC, universally 13C-labeled dipalmitoyl PC; PC, phosphatidylcholine; MSI, mass spectrometry imaging; H&E, hematoxylin and eosin. Fig 1-3, Fig S1-S3, S5

945.7279 [M-H2O+NH4]+
PPM:7.4
Mus musculus Lung MALDI (DHB)
image2 - MTBLS2075
Resolution: 40μm, 550x256

Description

Supplementary Figure S6. Ion distribution images for (a) [PC36:4+Na]+ (m/z 804.5514) and (b) [PC38:6+Na]+ (m/z 828.5515) obtained from mouse lung tissue collected 6 h after administration of D9- choline and U13C-DPPC–containing CHF5633. Parts-per-million (ppm) mass errors are indicated in parentheses. (c) Magnification of the boxed region in (a) with selected bronchiolar regions outlined in white boxes. (d) The corresponding H&E-stained tissue section with the same selected bronchiolar regions outlined in black boxes. These data demonstrate the co-localisation of the polyunsaturated lipids PC36:4 and PC38:6 with the bronchiolar regions of the lung. All MSI images were visualised using total ion current normalisation and hotspot removal (high quantile = 99%).

946.7302 [M+H]+
PPM:12
Mus musculus Lung MALDI (DHB)
image2 - MTBLS2075
Resolution: 40μm, 550x256

Description

Supplementary Figure S6. Ion distribution images for (a) [PC36:4+Na]+ (m/z 804.5514) and (b) [PC38:6+Na]+ (m/z 828.5515) obtained from mouse lung tissue collected 6 h after administration of D9- choline and U13C-DPPC–containing CHF5633. Parts-per-million (ppm) mass errors are indicated in parentheses. (c) Magnification of the boxed region in (a) with selected bronchiolar regions outlined in white boxes. (d) The corresponding H&E-stained tissue section with the same selected bronchiolar regions outlined in black boxes. These data demonstrate the co-localisation of the polyunsaturated lipids PC36:4 and PC38:6 with the bronchiolar regions of the lung. All MSI images were visualised using total ion current normalisation and hotspot removal (high quantile = 99%).


LacCer(d18:1/22:0) is a lactosylceramide or LacCer. Lactosylceramides are the most important and abundant of the diosylceramides. Lactosylceramides (LacCer) were originally called cytolipin H. It is found in small amounts only in most animal tissues, but it has a number of significant biological functions and it is of great importance as the biosynthetic precursor of most of the neutral oligoglycosylceramides, sulfatides and gangliosides. In animal tissues, biosynthesis of lactosylceramide involves addition of the second monosaccharides unit (galactose) as its nucleotide derivative to monoglucosylceramide, catalysed by a specific beta-1,4-galactosyltransferase on the lumenal side of the Golgi apparatus. The glucosylceramide precursor must first cross from the cytosolic side of the membrane, possibly via the action of a flippase. The lactosylceramide produced can be further glycosylated or transferred to the plasma membrane. Lactosylceramide may assist in stabilizing the plasma membrane and activating receptor molecules in the special micro-domains or rafts, as with the cerebrosides. It may also have its own specialized function in the immunological system in that it is known to bind to specific bacteria. In addition, it is believed that a number of pro-inflammatory factors activate lactosylceramide synthase to generate lactosylceramide, which in turn activates "oxygen-sensitive" signalling pathways that affect such cellular processes as proliferation, adhesion, migration and angiogenesis. Dysfunctions in these pathways can affect several diseases of the cardiovascular system, cancer and inflammatory states, so lactosylceramide metabolism is a potential target for new therapeutic treatments. beta-D-Galactosyl-1,4-beta-D-glucosylceramide is the second to last step in the synthesis of N-Acylsphingosine and is converted. from Glucosylceramide via the enzyme beta-1,4-galactosyltransferase 6(EC:2.4.1.-). It can be converted to Glucosylceramide via the enzyme beta-galactosidase (EC:3.2.1.23). Lactosylceramide (d18:1/22:0) is a lactosylceramide or LacCer. Lactosylceramides are the most important and abundant of the diosylceramides. Lactosylceramides (LacCer) were originally called cytolipin H. It is found in small amounts only in most animal tissues, but it has a number of significant biological functions and it is of great importance as the biosynthetic precursor of most of the neutral oligoglycosylceramides, sulfatides and gangliosides. In animal tissues, biosynthesis of lactosylceramide involves addition of the second monosaccharides unit (galactose) as its nucleotide derivative to monoglucosylceramide, catalysed by a specific beta-1,4-galactosyltransferase on the lumenal side of the Golgi apparatus. The glucosylceramide precursor must first cross from the cytosolic side of the membrane, possibly via the action of a flippase. The lactosylceramide produced can be further glycosylated or transferred to the plasma membrane. Lactosylceramide may assist in stabilizing the plasma membrane and activating receptor molecules in the special micro-domains or rafts, as with the cerebrosides. It may also have its own specialized function in the immunological system in that it is known to bind to specific bacteria. In addition, it is believed that a number of pro-inflammatory factors activate lactosylceramide synthase to generate lactosylceramide, which in turn activates "oxygen-sensitive" signalling pathways that affect such cellular processes as proliferation, adhesion, migration and angiogenesis. Dysfunctions in these pathways can affect several diseases of the cardiovascular system, cancer and inflammatory states, so lactosylceramide metabolism is a potential target for new therapeutic treatments. beta-D-Galactosyl-1,4-beta-D-glucosylceramide is the second to last step in the synthesis of N-Acylsphingosine and is converted