Citpressine II

1-hydroxy-3,5,6-trimethoxy-10-methyl-9,10-dihydroacridin-9-one

Formula: C17H17NO5 (315.1107)
Chinese Name:
BioDeep ID: BioDeep_00000025875 ( View LC/MS Profile)
SMILES: CN1C2=C(C(=CC(=C2)OC)O)C(=O)C3=C1C(=C(C=C3)OC)OC



Found 11 Sample Hits

m/z Adducts Species Organ Scanning Sample
316.1171 [M+H]+
PPM:2.7
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_43 - MTBLS58
Resolution: 17μm, 298x106

Description

316.1171 [M+H]+
PPM:2.7
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_44 - MTBLS58
Resolution: 17μm, 299x111

Description

316.1171 [M+H]+
PPM:2.7
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_46 - MTBLS58
Resolution: 17μm, 298x106

Description

316.1171 [M+H]+
PPM:2.7
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_47 - MTBLS58
Resolution: 17μm, 301x111

Description

316.1173 [M+H]+
PPM:2
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito08_48 - MTBLS58
Resolution: 17μm, 294x107

Description

316.1172 [M+H]+
PPM:2.4
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito01_04 - MTBLS58
Resolution: 17μm, 178x91

Description

316.117 [M+H]+
PPM:3
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito01_03 - MTBLS58
Resolution: 17μm, 159x110

Description

316.1171 [M+H]+
PPM:2.7
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito01_06 - MTBLS58
Resolution: 17μm, 183x103

Description

316.1171 [M+H]+
PPM:2.7
Rattus norvegicus Epididymis MALDI (DHB)
epik_dhb_head_ito03_14 - MTBLS58
Resolution: 17μm, 205x103

Description

315.1354 [M-H2O+NH4]+
PPM:4.7
Posidonia oceanica root MALDI (CHCA)
20190614_MS1_A19r-20 - MTBLS1746
Resolution: 17μm, 262x276

Description

Seagrasses are one of the most efficient natural sinks of carbon dioxide (CO2) on Earth. Despite covering less than 0.1% of coastal regions, they have the capacity to bury up to 10% of marine organic matter and can bury the same amount of carbon 35 times faster than tropical rainforests. On land, the soil’s ability to sequestrate carbon is intimately linked to microbial metabolism. Despite the growing attention to the link between plant production, microbial communities, and the carbon cycle in terrestrial ecosystems, these processes remain enigmatic in the sea. Here, we show that seagrasses excrete organic sugars, namely in the form of sucrose, into their rhizospheres. Surprisingly, the microbial communities living underneath meadows do not fully use this sugar stock in their metabolism. Instead, sucrose piles up in the sediments to mM concentrations underneath multiple types of seagrass meadows. Sediment incubation experiments show that microbial communities living underneath a meadow use sucrose at low metabolic rates. Our metagenomic analyses revealed that the distinct community of microorganisms occurring underneath meadows is limited in their ability to degrade simple sugars, which allows these compounds to persist in the environment over relatively long periods of time. Our findings reveal how seagrasses form blue carbon stocks despite the relatively small area they occupy. Unfortunately, anthropogenic disturbances are threatening the long-term persistence of seagrass meadows. Given that these sediments contain a large stock of sugars that heterotopic bacteria can degrade, it is even more important to protect these ecosystems from degradation.

315.136 [M-H2O+NH4]+
PPM:6.6
Posidonia oceanica root MALDI (CHCA)
20190613_MS1_A19r-18 - MTBLS1746
Resolution: 17μm, 246x264

Description


Citpressine II is found in citrus. Citpressine II is an alkaloid from the root of bark of Citrus depressa (Shekwasha mandarin