Medicagol

16-hydroxy-5,7,11,19-tetraoxapentacyclo[10.8.0.0²,¹⁰.0⁴,⁸.0¹³,¹⁸]icosa-1(12),2,4(8),9,13(18),14,16-heptaen-20-one

Formula: C16H8O6 (296.0321)
Chinese Name: 苜蓿内酯
BioDeep ID: BioDeep_00000017349 ( View LC/MS Profile)
SMILES: C1OC2=C(O1)C=C3C(=C2)C4=C(O3)C5=C(C=C(C=C5)O)OC4=O



Found 31 Sample Hits

m/z Adducts Species Organ Scanning Sample
297.0366 [M+H]+
PPM:9.3
Marker Pen NA DESI (None)
3ul_0.8Mpa_RAW_20241016-PAPER PNMK - MEMI_test
Resolution: 30μm, 315x42

Description

By writing the four English letters “PNMK” on white paper with a marker pen, and then scanning with a DESI ion source to obtain the scanning result. The signal of the chemical substances on the marker pen used appears on the channel with an m/z value of 322.1918, 323.1953, 546.4010, and etc, from the single cell deconvolution sampling layer class_4. This test data was tested by chuxiaoping from PANOMIX’s R&D laboratory.

297.0369 [M+H]+
PPM:8.3
Plant Root MALDI (DHB)
MPIMM_035_QE_P_PO_6pm - MPIMM_035_QE_P_PO_6pm
Resolution: 30μm, 165x170

Description

297.0359 [M+H]+
PPM:11.7
Homo sapiens Liver MALDI (DHB)
20171107_FIT4_DHBpos_p70_s50 - Rappez et al (2021) SpaceM reveals metabolic states of single cells
Resolution: 50μm, 70x70

Description

296.0267 [M]+
PPM:16.3
Vitis vinifera Fruit MALDI (DHB)
grape_dhb_91_1 - Grape Database
Resolution: 50μm, 120x114

Description

Grape berries fruit, condition: Ripe

297.037 [M+H]+
PPM:8
Vitis vinifera Fruit MALDI (DHB)
grape_dhb_91_1 - Grape Database
Resolution: 50μm, 120x114

Description

Grape berries fruit, condition: Ripe

319.0189 [M+Na]+
PPM:7.5
Vitis vinifera Fruit MALDI (DHB)
grape_dhb_91_1 - Grape Database
Resolution: 50μm, 120x114

Description

Grape berries fruit, condition: Ripe

296.0269 [M]+
PPM:15.7
Vitis vinifera Fruit MALDI (DHB)
grape_dhb_164_1 - Grape Database
Resolution: 17μm, 136x122

Description

Grape berries fruit, condition: Late

297.037 [M+H]+
PPM:8
Vitis vinifera Fruit MALDI (DHB)
grape_dhb_164_1 - Grape Database
Resolution: 17μm, 136x122

Description

Grape berries fruit, condition: Late

319.019 [M+Na]+
PPM:7.2
Vitis vinifera Fruit MALDI (DHB)
grape_dhb_164_1 - Grape Database
Resolution: 17μm, 136x122

Description

Grape berries fruit, condition: Late

296.0266 [M]+
PPM:16.7
Vitis vinifera Fruit MALDI (DHB)
grape_dhb_163_1 - Grape Database
Resolution: 17μm, 132x115

Description

Grape berries fruit, condition: Late

297.037 [M+H]+
PPM:8
Vitis vinifera Fruit MALDI (DHB)
grape_dhb_163_1 - Grape Database
Resolution: 17μm, 132x115

Description

Grape berries fruit, condition: Late

319.0189 [M+Na]+
PPM:7.5
Vitis vinifera Fruit MALDI (DHB)
grape_dhb_163_1 - Grape Database
Resolution: 17μm, 132x115

Description

Grape berries fruit, condition: Late

261.0138 [M+H-2H2O]+
PPM:17
Posidonia oceanica root MALDI (CHCA)
20190614_MS1_A19r-20 - MTBLS1746
Resolution: 17μm, 262x276

Description

Seagrasses are one of the most efficient natural sinks of carbon dioxide (CO2) on Earth. Despite covering less than 0.1% of coastal regions, they have the capacity to bury up to 10% of marine organic matter and can bury the same amount of carbon 35 times faster than tropical rainforests. On land, the soil’s ability to sequestrate carbon is intimately linked to microbial metabolism. Despite the growing attention to the link between plant production, microbial communities, and the carbon cycle in terrestrial ecosystems, these processes remain enigmatic in the sea. Here, we show that seagrasses excrete organic sugars, namely in the form of sucrose, into their rhizospheres. Surprisingly, the microbial communities living underneath meadows do not fully use this sugar stock in their metabolism. Instead, sucrose piles up in the sediments to mM concentrations underneath multiple types of seagrass meadows. Sediment incubation experiments show that microbial communities living underneath a meadow use sucrose at low metabolic rates. Our metagenomic analyses revealed that the distinct community of microorganisms occurring underneath meadows is limited in their ability to degrade simple sugars, which allows these compounds to persist in the environment over relatively long periods of time. Our findings reveal how seagrasses form blue carbon stocks despite the relatively small area they occupy. Unfortunately, anthropogenic disturbances are threatening the long-term persistence of seagrass meadows. Given that these sediments contain a large stock of sugars that heterotopic bacteria can degrade, it is even more important to protect these ecosystems from degradation.

297.0366 [M+H]+
PPM:9.3
Posidonia oceanica root MALDI (CHCA)
20190614_MS1_A19r-20 - MTBLS1746
Resolution: 17μm, 262x276

Description

Seagrasses are one of the most efficient natural sinks of carbon dioxide (CO2) on Earth. Despite covering less than 0.1% of coastal regions, they have the capacity to bury up to 10% of marine organic matter and can bury the same amount of carbon 35 times faster than tropical rainforests. On land, the soil’s ability to sequestrate carbon is intimately linked to microbial metabolism. Despite the growing attention to the link between plant production, microbial communities, and the carbon cycle in terrestrial ecosystems, these processes remain enigmatic in the sea. Here, we show that seagrasses excrete organic sugars, namely in the form of sucrose, into their rhizospheres. Surprisingly, the microbial communities living underneath meadows do not fully use this sugar stock in their metabolism. Instead, sucrose piles up in the sediments to mM concentrations underneath multiple types of seagrass meadows. Sediment incubation experiments show that microbial communities living underneath a meadow use sucrose at low metabolic rates. Our metagenomic analyses revealed that the distinct community of microorganisms occurring underneath meadows is limited in their ability to degrade simple sugars, which allows these compounds to persist in the environment over relatively long periods of time. Our findings reveal how seagrasses form blue carbon stocks despite the relatively small area they occupy. Unfortunately, anthropogenic disturbances are threatening the long-term persistence of seagrass meadows. Given that these sediments contain a large stock of sugars that heterotopic bacteria can degrade, it is even more important to protect these ecosystems from degradation.

319.0196 [M+Na]+
PPM:5.4
Posidonia oceanica root MALDI (CHCA)
20190614_MS1_A19r-20 - MTBLS1746
Resolution: 17μm, 262x276

Description

Seagrasses are one of the most efficient natural sinks of carbon dioxide (CO2) on Earth. Despite covering less than 0.1% of coastal regions, they have the capacity to bury up to 10% of marine organic matter and can bury the same amount of carbon 35 times faster than tropical rainforests. On land, the soil’s ability to sequestrate carbon is intimately linked to microbial metabolism. Despite the growing attention to the link between plant production, microbial communities, and the carbon cycle in terrestrial ecosystems, these processes remain enigmatic in the sea. Here, we show that seagrasses excrete organic sugars, namely in the form of sucrose, into their rhizospheres. Surprisingly, the microbial communities living underneath meadows do not fully use this sugar stock in their metabolism. Instead, sucrose piles up in the sediments to mM concentrations underneath multiple types of seagrass meadows. Sediment incubation experiments show that microbial communities living underneath a meadow use sucrose at low metabolic rates. Our metagenomic analyses revealed that the distinct community of microorganisms occurring underneath meadows is limited in their ability to degrade simple sugars, which allows these compounds to persist in the environment over relatively long periods of time. Our findings reveal how seagrasses form blue carbon stocks despite the relatively small area they occupy. Unfortunately, anthropogenic disturbances are threatening the long-term persistence of seagrass meadows. Given that these sediments contain a large stock of sugars that heterotopic bacteria can degrade, it is even more important to protect these ecosystems from degradation.

261.0133 [M+H-2H2O]+
PPM:18.9
Posidonia oceanica root MALDI (CHCA)
20190822_MS1_A19r-19 - MTBLS1746
Resolution: 17μm, 303x309

Description

Seagrasses are among the most efficient sinks of carbon dioxide on Earth. While carbon sequestration in terrestrial plants is linked to the microorganisms living in their soils, the interactions of seagrasses with their rhizospheres are poorly understood. Here, we show that the seagrass, Posidonia oceanica excretes sugars, mainly sucrose, into its rhizosphere. These sugars accumulate to µM concentrations—nearly 80 times higher than previously observed in marine environments. This finding is unexpected as sugars are readily consumed by microorganisms. Our experiments indicated that under low oxygen conditions, phenolic compounds from P. oceanica inhibited microbial consumption of sucrose. Analyses of the rhizosphere community revealed that many microbes had the genes for degrading sucrose but these were only expressed by a few taxa that also expressed genes for degrading phenolics. Given that we observed high sucrose concentrations underneath three other species of marine plants, we predict that the presence of plant-produced phenolics under low oxygen conditions allows the accumulation of labile molecules across aquatic rhizospheres.

297.0367 [M+H]+
PPM:9
Posidonia oceanica root MALDI (CHCA)
20190822_MS1_A19r-19 - MTBLS1746
Resolution: 17μm, 303x309

Description

Seagrasses are among the most efficient sinks of carbon dioxide on Earth. While carbon sequestration in terrestrial plants is linked to the microorganisms living in their soils, the interactions of seagrasses with their rhizospheres are poorly understood. Here, we show that the seagrass, Posidonia oceanica excretes sugars, mainly sucrose, into its rhizosphere. These sugars accumulate to µM concentrations—nearly 80 times higher than previously observed in marine environments. This finding is unexpected as sugars are readily consumed by microorganisms. Our experiments indicated that under low oxygen conditions, phenolic compounds from P. oceanica inhibited microbial consumption of sucrose. Analyses of the rhizosphere community revealed that many microbes had the genes for degrading sucrose but these were only expressed by a few taxa that also expressed genes for degrading phenolics. Given that we observed high sucrose concentrations underneath three other species of marine plants, we predict that the presence of plant-produced phenolics under low oxygen conditions allows the accumulation of labile molecules across aquatic rhizospheres.

319.0188 [M+Na]+
PPM:7.9
Posidonia oceanica root MALDI (CHCA)
20190822_MS1_A19r-19 - MTBLS1746
Resolution: 17μm, 303x309

Description

Seagrasses are among the most efficient sinks of carbon dioxide on Earth. While carbon sequestration in terrestrial plants is linked to the microorganisms living in their soils, the interactions of seagrasses with their rhizospheres are poorly understood. Here, we show that the seagrass, Posidonia oceanica excretes sugars, mainly sucrose, into its rhizosphere. These sugars accumulate to µM concentrations—nearly 80 times higher than previously observed in marine environments. This finding is unexpected as sugars are readily consumed by microorganisms. Our experiments indicated that under low oxygen conditions, phenolic compounds from P. oceanica inhibited microbial consumption of sucrose. Analyses of the rhizosphere community revealed that many microbes had the genes for degrading sucrose but these were only expressed by a few taxa that also expressed genes for degrading phenolics. Given that we observed high sucrose concentrations underneath three other species of marine plants, we predict that the presence of plant-produced phenolics under low oxygen conditions allows the accumulation of labile molecules across aquatic rhizospheres.

261.0142 [M+H-2H2O]+
PPM:15.5
Posidonia oceanica root MALDI (CHCA)
20190613_MS1_A19r-18 - MTBLS1746
Resolution: 17μm, 246x264

Description

297.0374 [M+H]+
PPM:6.6
Posidonia oceanica root MALDI (CHCA)
20190613_MS1_A19r-18 - MTBLS1746
Resolution: 17μm, 246x264

Description

319.0203 [M+Na]+
PPM:3.2
Posidonia oceanica root MALDI (CHCA)
20190613_MS1_A19r-18 - MTBLS1746
Resolution: 17μm, 246x264

Description

319.0197 [M+Na]+
PPM:5
Posidonia oceanica root MALDI (CHCA)
20190828_MS1_A19r-22 - MTBLS1746
Resolution: 17μm, 292x279

Description

261.0135 [M+H-2H2O]+
PPM:18.1
Posidonia oceanica root MALDI (CHCA)
MS1_20180404_PO_1200 - MTBLS1746
Resolution: 17μm, 193x208

Description

297.0369 [M+H]+
PPM:8.3
Posidonia oceanica root MALDI (CHCA)
MS1_20180404_PO_1200 - MTBLS1746
Resolution: 17μm, 193x208

Description

319.0197 [M+Na]+
PPM:5
Posidonia oceanica root MALDI (CHCA)
MS1_20180404_PO_1200 - MTBLS1746
Resolution: 17μm, 193x208

Description

297.0385 [M+H]+
PPM:2.9
Homo sapiens esophagus DESI ()
LNTO22_1_3 - MTBLS385
Resolution: 75μm, 121x68

Description

297.0388 [M+H]+
PPM:1.9
Homo sapiens esophagus DESI ()
LNTO22_1_5 - MTBLS385
Resolution: 75μm, 135x94

Description

297.0385 [M+H]+
PPM:2.9
Homo sapiens esophagus DESI ()
LNTO22_1_8 - MTBLS385
Resolution: 75μm, 69x61

Description

297.0385 [M+H]+
PPM:2.9
Homo sapiens esophagus DESI ()
LNTO22_2_1 - MTBLS385
Resolution: 75μm, 89x88

Description

297.0388 [M+H]+
PPM:1.9
Homo sapiens esophagus DESI ()
LNTO22_2_2 - MTBLS385
Resolution: 75μm, 135x94

Description

297.0373 [M+H]+
PPM:6.9
Drosophila melanogaster brain MALDI (DHB)
Drosophila18 - 2019-10-16_14h26m34s
Resolution: 5μm, 686x685

Description

Sample information Organism: Drosophila melanogaster Organism part: Brain Condition: Healthy Sample preparation Sample stabilisation: Frozen Tissue modification: Frozen MALDI matrix: 2,5-dihydroxybenzoic acid (DHB) MALDI matrix application: TM sprayer Solvent: Aceton/water MS analysis Polarity: Positive Ionisation source: Prototype Analyzer: Orbitrap Pixel size: 5μm × 5μm Annotation settings m/z tolerance (ppm): 3 Analysis version: Original MSM Pixel count: 469910 Imzml file size: 696.23 MB Ibd file size: 814.11 MB


Medicagol is a member of coumestans. Medicagol is a natural product found in Cicer chorassanicum, Sophora moorcroftiana, and other organisms with data available. See also: Trifolium pratense flower (part of). Medicagol is found in alfalfa. Medicagol is found in alfalfa (Medicago sativa) having viral leaf spot infections. Also from Cicer arietinum (chick pea) and Trifolium pratense (red clover). Found in alfalfa (Medicago sativa) having viral leaf spot infectionsand is also from Cicer arietinum (chick pea) and Trifolium pratense (red clover).