Demissidine
Formula: C28H48O5 (464.3502)
Chinese Name:
BioDeep ID: BioDeep_00000014910
( View LC/MS Profile)
SMILES: [H][C@](C)(C(C)C)[C@@]([H])(O)[C@]([H])(O)[C@@]([H])(C)C1([H])CCC2([H])C3([H])COC(=O)C4([H])C[C@]([H])(O)CC[C@]4(C)C3([H])CC[C@]12C
Found 3 Sample Hits
m/z | Adducts | Species | Organ | Scanning | Sample | |
---|---|---|---|---|---|---|
465.3544 | [M+H]+PPM:6.5 |
Mus musculus | Lung | MALDI (DHB) |
image3 - MTBLS2075Resolution: 40μm, 146x190
Fig. 4 MALDI-MSI data of mouse lung tissue after administration with D9-choline and U13C-DPPC–containing Poractant alfa surfactant (labels administered 12 h prior to tissue collection). Ion images of (A) m/z 796.6856 ([U13C-DPPC+Na]+), (B) m/z 756.5154 [PC32:0+Na]+), and (C) m/z 765.6079 ([D9-PC32:0+Na]+). D: Overlay image of [U13C-PC32:0+Na]+ (red) and [D9-PC32:0+Na]+ (green). Part-per-million (ppm) mass errors are indicated in parentheses. All images were visualized using total-ion-current normalization and using hotspot removal (high quantile = 99%). DPPC = PC16:0/16:0. MSI, mass spectrometry imaging; PC, phosphatidylcholine; U13C-DPPC, universally 13C-labeled dipalmitoyl PC. |
|
465.3492 | [M+H]+PPM:17.7 |
Mus musculus | Liver | MALDI (CHCA) |
Salmonella_final_pos_recal - MTBLS2671Resolution: 17μm, 691x430
A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium.
[dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671. |
|
482.3841 | [M+NH4]+PPM:0.2 |
Mus musculus | Liver | MALDI (CHCA) |
Salmonella_final_pos_recal - MTBLS2671Resolution: 17μm, 691x430
A more complete and holistic view on host–microbe interactions is needed to understand the physiological and cellular barriers that affect the efficacy of drug treatments and allow the discovery and development of new therapeutics. Here, we developed a multimodal imaging approach combining histopathology with mass spectrometry imaging (MSI) and same section imaging mass cytometry (IMC) to study the effects of Salmonella Typhimurium infection in the liver of a mouse model using the S. Typhimurium strains SL3261 and SL1344. This approach enables correlation of tissue morphology and specific cell phenotypes with molecular images of tissue metabolism. IMC revealed a marked increase in immune cell markers and localization in immune aggregates in infected tissues. A correlative computational method (network analysis) was deployed to find metabolic features associated with infection and revealed metabolic clusters of acetyl carnitines, as well as phosphatidylcholine and phosphatidylethanolamine plasmalogen species, which could be associated with pro-inflammatory immune cell types. By developing an IMC marker for the detection of Salmonella LPS, we were further able to identify and characterize those cell types which contained S. Typhimurium.
[dataset] Nicole Strittmatter. Holistic Characterization of a Salmonella Typhimurium Infection Model Using Integrated Molecular Imaging, metabolights_dataset, V1; 2022. https://www.ebi.ac.uk/metabolights/MTBLS2671. |
|
3-epidemissidine belongs to solanidines and derivatives class of compounds. Those are steroids with a structure based on the solanidane skeleton. Solanidane arises from the conversion of a cholestane side-chain into a bicyclic system. 3-epidemissidine is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). 3-epidemissidine can be found in alcoholic beverages, potato, and root vegetables, which makes 3-epidemissidine a potential biomarker for the consumption of these food products. 2-deoxybrassinolide belongs to brassinolides and derivatives class of compounds. Those are cholestane based steroid lactones containing benzo[c]indeno[5,4-e]oxepin-3-one. 2-deoxybrassinolide is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 2-deoxybrassinolide can be found in common pea, green vegetables, and pulses, which makes 2-deoxybrassinolide a potential biomarker for the consumption of these food products.