3,4-Dihydroxyphenylglycol

4-(1,2-dihydroxyethyl)benzene-1,2-diol

Formula: C8H10O4 (170.0579)
Chinese Name: 3,4-二羟基苯基乙二醇
BioDeep ID: BioDeep_00000001226 ( View LC/MS Profile)
SMILES: C1=CC(=C(C=C1C(CO)O)O)O



Found 7 Sample Hits

m/z Adducts Species Organ Scanning Sample
171.0627 [M+H]+
PPM:14.5
Posidonia oceanica root MALDI (CHCA)
20190614_MS1_A19r-20 - MTBLS1746
Resolution: 17μm, 262x276

Description

Seagrasses are one of the most efficient natural sinks of carbon dioxide (CO2) on Earth. Despite covering less than 0.1% of coastal regions, they have the capacity to bury up to 10% of marine organic matter and can bury the same amount of carbon 35 times faster than tropical rainforests. On land, the soil’s ability to sequestrate carbon is intimately linked to microbial metabolism. Despite the growing attention to the link between plant production, microbial communities, and the carbon cycle in terrestrial ecosystems, these processes remain enigmatic in the sea. Here, we show that seagrasses excrete organic sugars, namely in the form of sucrose, into their rhizospheres. Surprisingly, the microbial communities living underneath meadows do not fully use this sugar stock in their metabolism. Instead, sucrose piles up in the sediments to mM concentrations underneath multiple types of seagrass meadows. Sediment incubation experiments show that microbial communities living underneath a meadow use sucrose at low metabolic rates. Our metagenomic analyses revealed that the distinct community of microorganisms occurring underneath meadows is limited in their ability to degrade simple sugars, which allows these compounds to persist in the environment over relatively long periods of time. Our findings reveal how seagrasses form blue carbon stocks despite the relatively small area they occupy. Unfortunately, anthropogenic disturbances are threatening the long-term persistence of seagrass meadows. Given that these sediments contain a large stock of sugars that heterotopic bacteria can degrade, it is even more important to protect these ecosystems from degradation.

170.0574 [M]+
PPM:0.3
Posidonia oceanica root MALDI (CHCA)
MS1_20180404_PO_1200 - MTBLS1746
Resolution: 17μm, 193x208

Description

188.093 [M+NH4]+
PPM:6.7
Posidonia oceanica root MALDI (CHCA)
MS1_20180404_PO_1200 - MTBLS1746
Resolution: 17μm, 193x208

Description

171.0658 [M+H]+
PPM:3.6
Homo sapiens esophagus DESI ()
LNTO22_1_3 - MTBLS385
Resolution: 75μm, 121x68

Description

171.0656 [M+H]+
PPM:2.4
Homo sapiens esophagus DESI ()
LNTO22_1_8 - MTBLS385
Resolution: 75μm, 69x61

Description

171.0659 [M+H]+
PPM:4.2
Homo sapiens esophagus DESI ()
LNTO22_2_1 - MTBLS385
Resolution: 75μm, 89x88

Description

171.066 [M+H]+
PPM:4.8
Homo sapiens esophagus DESI ()
LNTO22_2_2 - MTBLS385
Resolution: 75μm, 135x94

Description


3,4-Dihydroxyphenylglycol, also known as DHPG or DOPEG, belongs to the class of organic compounds known as catechols. Catechols are compounds containing a 1,2-benzenediol moiety. 3,4-Dihydroxyphenylglycol is an extremely weak basic (essentially neutral) compound. 3,4-Dihydroxyphenylglycol exists in all living organisms, ranging from bacteria to plants to humans. It is a potent antioxidant (PMID: 30007612). In mammals, 3,4-Dihydroxyphenylglycol is the primary metabolite of norepinephrine and is generated through the action of the enzyme monoamine oxidase (MAO). DHPG is then further metabolized by the enzyme Catechol-O-methyltransferase (COMT) to 3-methoxy-4-hydroxyphenylglycol (MHPG). Within humans, 3,4-dihydroxyphenylglycol participates in a number of enzymatic reactions. In particular, 3,4-dihydroxyphenylglycol can be biosynthesized from 3,4-dihydroxymandelaldehyde; which is mediated by the enzyme alcohol dehydrogenase 1A. In addition, 3,4-dihydroxyphenylglycol and guaiacol can be converted into vanylglycol and pyrocatechol through its interaction with the enzyme catechol O-methyltransferase. Outside of the human body, 3,4-dihydroxyphenylglycol is found, on average, in the highest concentration in olives. High levels of DHPG (up to 368 mg/kg of dry weight) have been found in the pulp of natural black olives. This could make 3,4-dihydroxyphenylglycol a potential biomarker for the consumption of olives and olive oil. 3,4-Dihydroxyphenylglycol has been linked to Menkes disease (PMID: 19234788). DHPG level are lower in Menkes patients (3.57 ± 0.40 nM) than healthy infants 8.91 ± 0.77 nM). Menkes disease (also called “kinky hair disease”) is an X-linked recessive neurodevelopmental disorder caused by defects in a gene that encodes a copper-transporting ATPase (ATP7A). Affected infants typically appear healthy at birth and show normal neurodevelopment for 2-3 months. Subsequently there is loss of milestones (e.g., smiling, visual tracking, head control) and death in late infancy or childhood (PMID: 19234788). 3,4-Dihydroxyphenylglycol (DOPEG) is a normal norepinephrine metabolite present in CSF, plasma and urine in humans (PMID 6875564). In healthy individuals there is a tendency for free DOPEG to increase and for conjugated DOPEG to decrease with age; plasmatic DOPEG levels are significantly lower in depressed patients as compared to healthy controls (PMID 6671452). DL-1-(3,4-Dihydroxyphenyl)-1,2-ethanediol is found in olive. 4-(1,2-Dihydroxyethyl)benzene-1,2-diol, a normal norepinephrine metabolite, is found to be associated with Menkes syndrome.