(2Z,5E,7E)-Deca-2,5,7-trienedioyl-CoA

10-({2-[(3-{[4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-1,2-dihydroxy-3,3-dimethylbutylidene]amino}-1-hydroxypropylidene)amino]ethyl}sulphanyl)-10-oxodeca-2,5,7-trienoic acid

Formula: C31H46N7O19P3S (945.1782)
Chinese Name:
BioDeep ID: BioDeep_00000225918 ( View LC/MS Profile)
SMILES: CC(C)(COP(O)(=O)OP(O)(=O)OCC1OC(C(O)C1OP(O)(O)=O)N1C=NC2=C1N=CN=C2N)C(O)C(=O)NCCC(=O)NCCSC(=O)CC=CC=CCC=CC(O)=O



Found 2 Sample Hits

m/z Adducts Species Organ Scanning Sample
968.149 [M+Na]+
PPM:19
Mus musculus Left upper arm MALDI (CHCA)
357_l_total ion count - Limb defect imaging - Monash University
Resolution: 50μm, 97x131

Description

Diseased

928.193 [M+H-H2O]+
PPM:19.5
Mus musculus Lung MALDI (DHB)
image4 - MTBLS2075
Resolution: 40μm, 162x156

Description

Fig 6c Fig. 6 MALDI-MSI of U13C-PC16:0/16:0 acyl chain remodeling. A: Averaged MALDI mass spectrum from lung tissue collected from mice euthanized 12 h after administration of D9-choline and U13C-DPPC–containing Poractant alfa surfactant. The ion at m/z 828.6321 is assigned as the [M+Na]+ ion of 13C24-PC16:0_20:4 formed by acyl remodeling of U13C-PC16:0/16:0. The “NL” value refers to the intensity of the base peak in the full range MS1 spectrum. B: MS/MS spectrum of precursor ions at m/z 828.5 ± 0.5 with fragment ions originating from [13C24-PC16:0_20:4+Na]+ annotated. Part-per-million (ppm) mass errors are provided in parentheses. C, D: MALDI-MSI data of [U13C-DPPC+Na]+ (blue), [PC36:4+Na]+ (green) and [13C24-PC16:0_20:4+Na]+ (red) in lung tissue collected from mice (C) 12 h and (D) 18 h after label administration. All images were visualized using total-ion-current normalization and hotspot removal (high quantile = 99%). MS/MS, tandem mass spectrometry; MSI, mass spectrometry imaging; PC, phosphatidylcholine; U13C-DPPC, universally 13C-labeled dipalmitoyl PC.


(2z,5e,7e)-deca-2,5,7-trienedioyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (2Z_5E_7E)-deca-2_5_7-trienedioic acid thioester of coenzyme A. (2z,5e,7e)-deca-2,5,7-trienedioyl-coa is an acyl-CoA with 10 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoAs are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (2z,5e,7e)-deca-2,5,7-trienedioyl-coa is therefore classified as a medium chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (2z,5e,7e)-deca-2,5,7-trienedioyl-coa, being a medium chain acyl-CoA is a substrate for medium chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (2Z,5E,7E)-Deca-2,5,7-trienedioyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (2Z,5E,7E)-Deca-2,5,7-trienedioyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (2Z,5E,7E)-Deca-2,5,7-trienedioyl-CoA into (2Z_5E_7E)-Deca-2_5_7-trienedioylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (2Z_5E_7E)-Deca-2_5_7-trienedioylcarnitine is converted back to (2Z,5E,7E)-Deca-2,5,7-trienedioyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (2Z,5E,7E)-Deca-2,5,7-trienedioyl-CoA occurs in four steps. First, since (2Z,5E,7E)-Deca-2,5,7-trienedioyl-CoA is a medium chain acyl-CoA it is the substrate for a medium chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (2Z,5E,7E)-Deca-2,5,7-trienedioyl-CoA, creating a double bond between the alpha and beta carbons. FAD ...