LCS34-B">

Chlorophyll b

(5R,22S,23S)-17-ethenyl-12-ethyl-13-formyl-5-(methoxycarbonyl)-8,18,22-trimethyl-6-oxo-23-(3-oxo-3-{[(2E,7R,11R)-3,7,11,15-tetramethylhexadec-2-en-1-yl]oxy}propyl)-2,25lambda5,26lambda5,27-tetraaza-1-magnesanonacyclo[12.11.1.1^{1,16}.0^{2,9}.0^{3,7}.0^{4,24}.0^{11,26}.0^{21,25}.0^{19,27}]heptacosa-3,7,9,11(26),12,14,16,18,20,24-decaene-25,26-bis(ylium)-1,1-diuide

Formula: C55H70MgN4O6 (906.5146)
Chinese Name: 叶绿素B
BioDeep ID: BioDeep_00000019375 ( View LC/MS Profile)
SMILES: [H]C(=O)C1=C(CC)C2=[N+]3C1=CC1=C(C=C)C(C)=C4C=C5[C@@H](C)[C@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)C6=[N+]5[Mg--]3(N14)N1C(=C2)C(C)=C2C(=O)[C@H](C(=O)OC)C6=C12



Found 9 Sample Hits

m/z Adducts Species Organ Scanning Sample
906.5314 [M-H2O+NH4]+
PPM:7.1
Mus musculus Lung MALDI (DHB)
image1 - MTBLS2075
Resolution: 40μm, 187x165

Description

Fig. 2 MALDI-MSI data from the same mouse lung tissue analyzed in Fig. 1. A: Optical image of the post-MSI, H&E-stained tissue section. B–D, F–G: Ion images of (B) m/z 796.6855 ([U13C-DPPC+Na]+), (C) m/z 756.5514 ([PC32:0+Na]+), (D) m/z 765.6079 ([D9-PC32:0+Na]+), (F) m/z 754.5359 ([PC32:1+Na]+), and (G) m/z 763.5923 ([D9-PC32:1+Na]+). E, H: Ratio images of (E) [D9-PC32:0+Na]+:[PC32:0+Na]+ and (H) [D9-PC32:1+Na]+:[PC32:1+Na]+. Part-per-million (ppm) mass errors are indicated in parentheses. All images were visualized using total-ion-current normalization and using hotspot removal (high quantile = 99%). DPPC = PC16:0/16:0. U13C-DPPC, universally 13C-labeled dipalmitoyl PC; PC, phosphatidylcholine; MSI, mass spectrometry imaging; H&E, hematoxylin and eosin. Fig 1-3, Fig S1-S3, S5

907.5298 [M+H]+
PPM:8.8
Mus musculus Lung MALDI (DHB)
image1 - MTBLS2075
Resolution: 40μm, 187x165

Description

Fig. 2 MALDI-MSI data from the same mouse lung tissue analyzed in Fig. 1. A: Optical image of the post-MSI, H&E-stained tissue section. B–D, F–G: Ion images of (B) m/z 796.6855 ([U13C-DPPC+Na]+), (C) m/z 756.5514 ([PC32:0+Na]+), (D) m/z 765.6079 ([D9-PC32:0+Na]+), (F) m/z 754.5359 ([PC32:1+Na]+), and (G) m/z 763.5923 ([D9-PC32:1+Na]+). E, H: Ratio images of (E) [D9-PC32:0+Na]+:[PC32:0+Na]+ and (H) [D9-PC32:1+Na]+:[PC32:1+Na]+. Part-per-million (ppm) mass errors are indicated in parentheses. All images were visualized using total-ion-current normalization and using hotspot removal (high quantile = 99%). DPPC = PC16:0/16:0. U13C-DPPC, universally 13C-labeled dipalmitoyl PC; PC, phosphatidylcholine; MSI, mass spectrometry imaging; H&E, hematoxylin and eosin. Fig 1-3, Fig S1-S3, S5

871.5041 [M+H-2H2O]+
PPM:3.9
Mus musculus Left upper arm MALDI (CHCA)
357_l_total ion count - Limb defect imaging - Monash University
Resolution: 50μm, 97x131

Description

Diseased

907.5315 [M+H]+
PPM:10.7
Mus musculus Lung MALDI (DHB)
image3 - MTBLS2075
Resolution: 40μm, 146x190

Description

Fig. 4 MALDI-MSI data of mouse lung tissue after administration with D9-choline and U13C-DPPC–containing Poractant alfa surfactant (labels administered 12 h prior to tissue collection). Ion images of (A) m/z 796.6856 ([U13C-DPPC+Na]+), (B) m/z 756.5154 [PC32:0+Na]+), and (C) m/z 765.6079 ([D9-PC32:0+Na]+). D: Overlay image of [U13C-PC32:0+Na]+ (red) and [D9-PC32:0+Na]+ (green). Part-per-million (ppm) mass errors are indicated in parentheses. All images were visualized using total-ion-current normalization and using hotspot removal (high quantile = 99%). DPPC = PC16:0/16:0. MSI, mass spectrometry imaging; PC, phosphatidylcholine; U13C-DPPC, universally 13C-labeled dipalmitoyl PC.

906.5302 [M-H2O+NH4]+
PPM:8.4
Mus musculus Lung MALDI (DHB)
image4 - MTBLS2075
Resolution: 40μm, 162x156

Description

Fig 6c Fig. 6 MALDI-MSI of U13C-PC16:0/16:0 acyl chain remodeling. A: Averaged MALDI mass spectrum from lung tissue collected from mice euthanized 12 h after administration of D9-choline and U13C-DPPC–containing Poractant alfa surfactant. The ion at m/z 828.6321 is assigned as the [M+Na]+ ion of 13C24-PC16:0_20:4 formed by acyl remodeling of U13C-PC16:0/16:0. The “NL” value refers to the intensity of the base peak in the full range MS1 spectrum. B: MS/MS spectrum of precursor ions at m/z 828.5 ± 0.5 with fragment ions originating from [13C24-PC16:0_20:4+Na]+ annotated. Part-per-million (ppm) mass errors are provided in parentheses. C, D: MALDI-MSI data of [U13C-DPPC+Na]+ (blue), [PC36:4+Na]+ (green) and [13C24-PC16:0_20:4+Na]+ (red) in lung tissue collected from mice (C) 12 h and (D) 18 h after label administration. All images were visualized using total-ion-current normalization and hotspot removal (high quantile = 99%). MS/MS, tandem mass spectrometry; MSI, mass spectrometry imaging; PC, phosphatidylcholine; U13C-DPPC, universally 13C-labeled dipalmitoyl PC.

907.5287 [M+H]+
PPM:7.6
Mus musculus Lung MALDI (DHB)
image4 - MTBLS2075
Resolution: 40μm, 162x156

Description

Fig 6c Fig. 6 MALDI-MSI of U13C-PC16:0/16:0 acyl chain remodeling. A: Averaged MALDI mass spectrum from lung tissue collected from mice euthanized 12 h after administration of D9-choline and U13C-DPPC–containing Poractant alfa surfactant. The ion at m/z 828.6321 is assigned as the [M+Na]+ ion of 13C24-PC16:0_20:4 formed by acyl remodeling of U13C-PC16:0/16:0. The “NL” value refers to the intensity of the base peak in the full range MS1 spectrum. B: MS/MS spectrum of precursor ions at m/z 828.5 ± 0.5 with fragment ions originating from [13C24-PC16:0_20:4+Na]+ annotated. Part-per-million (ppm) mass errors are provided in parentheses. C, D: MALDI-MSI data of [U13C-DPPC+Na]+ (blue), [PC36:4+Na]+ (green) and [13C24-PC16:0_20:4+Na]+ (red) in lung tissue collected from mice (C) 12 h and (D) 18 h after label administration. All images were visualized using total-ion-current normalization and hotspot removal (high quantile = 99%). MS/MS, tandem mass spectrometry; MSI, mass spectrometry imaging; PC, phosphatidylcholine; U13C-DPPC, universally 13C-labeled dipalmitoyl PC.

907.5257 [M+H]+
PPM:4.3
Mus musculus Lung MALDI (DHB)
image5 - MTBLS2075
Resolution: 40μm, 163x183

Description

Supplementary Figure S8. MALDI-MSI data of mouse lung tissue administered with D9-choline and U 13C-DPPC–containing Poractant alfa surfactant (labels administered 18 h prior to sacrifice). Ion images of (a) m/z 796.6856 ([U13C-DPPC+Na]+), (b) m/z 756.5154 [PC32:0+Na]+ and (c) m/z 765.6079 ([D9-PC32:0+Na]+). (d) Overlay image of [U13C-DPPC+Na]+ (red) and [D9-PC32:0+Na]+ (green). Parts per million (ppm) mass errors are indicated in parentheses. All images were visualised using totalion-current normalisation and using hotspot removal (high quantile = 99%). DPPC = PC16:0/16:0.

907.5276 [M+H]+
PPM:6.4
Mus musculus Lung MALDI (DHB)
image2 - MTBLS2075
Resolution: 40μm, 550x256

Description

Supplementary Figure S6. Ion distribution images for (a) [PC36:4+Na]+ (m/z 804.5514) and (b) [PC38:6+Na]+ (m/z 828.5515) obtained from mouse lung tissue collected 6 h after administration of D9- choline and U13C-DPPC–containing CHF5633. Parts-per-million (ppm) mass errors are indicated in parentheses. (c) Magnification of the boxed region in (a) with selected bronchiolar regions outlined in white boxes. (d) The corresponding H&E-stained tissue section with the same selected bronchiolar regions outlined in black boxes. These data demonstrate the co-localisation of the polyunsaturated lipids PC36:4 and PC38:6 with the bronchiolar regions of the lung. All MSI images were visualised using total ion current normalisation and hotspot removal (high quantile = 99%).

907.5233 [M+H]+
PPM:1.6
Homo sapiens colorectal adenocarcinoma DESI ()
240TopL, 210TopR, 230BottomL, 220BottomR-centroid - MTBLS176
Resolution: 50μm, 142x141

Description


Chlorophyll b is found in common wheat. Chlorophyll b is a green pigment in leaves of plants together with Chlorophyll a LCS34-B Chlorophyll is a chlorin pigment, which is structurally similar to and produced through the same metabolic pathway as other porphyrin pigments such as heme. At the center of the chlorin ring is a magnesium ion. For the structures depicted in this article, some of the ligands attached to the Mg2+ center are omitted for clarity. The chlorin ring can have several different side chains, usually including a long phytol chain. There are a few different forms that occur naturally, but the most widely distributed form in terrestrial plants is chlorophyll a. The general structure of chlorophyll a was elucidated by Hans Fischer in 1940, and by 1960, when most of the stereochemistry of chlorophyll a was known, Robert Burns Woodward published a total synthesis of the molecule as then known. In 1967, the last remaining stereochemical elucidation was completed by Ian Fleming, and in 1990 Woodward and co-authors published an updated synthesis. Chlorophyll is a green pigment found in most plants, algae, and cyanobacteria. Its name is derived from the Greek (chloros "green") and (phyllon "leaf"). Chlorophyll absorbs light most strongly in the blue and red but poorly in the green portions of the electromagnetic spectrum, hence the green colour of chlorophyll-containing tissues such as plant leaves. Chlorophyll itself is bound to proteins and can transfer the absorbed energy in the required direction. Protochlorophyllide, differently, mostly occur in the free form and under light conditions act as photosensitizer, forming highly toxic free radicals. Hence plants need an efficient mechanism of regulating the amount of chlorophyll precursor. In angiosperms, this is done at the step of aminolevulinic acid (ALA), one of the intermediate compounds in the biosynthesis pathway. Plants that are fed by ALA accumulate high and toxic levels of protochlorophyllide, so do the mutants with the damaged regulatory system. Chlorosis is a condition in which leaves produce insufficient chlorophyll, turning them yellow. Chlorosis can be caused by a nutrient deficiency including iron - called iron chlorosis, or in a shortage of magnesium or nitrogen. Soil pH sometimes play a role in nutrient-caused chlorosis, many plants are adapted to grow in soils with specific pHs and their ability to absorb nutrients from the soil can be dependent on the soil pH. Chlorosis can also be caused by pathogens including viruses, bacteria and fungal infections or sap sucking insects Green pigment in leaves of plants together with Chlorophyll a LCS34-B