Gamma-Glutamylvaline
Formula: C10H18N2O5 (246.1216)
Chinese Name: γ-谷氨酰缬氨酸
BioDeep ID: BioDeep_00000018627
( View LC/MS Profile)
SMILES: CC(C)[C@H](NC(=O)CC[C@H](N)C(O)=O)C(O)=O
Found 3 Sample Hits
m/z | Adducts | Species | Organ | Scanning | Sample | |
---|---|---|---|---|---|---|
229.1198 | [M+H-H2O]+PPM:6.6 |
Posidonia oceanica | root | MALDI (CHCA) |
20190614_MS1_A19r-20 - MTBLS1746Resolution: 17μm, 262x276
Seagrasses are one of the most efficient natural sinks of carbon dioxide (CO2) on Earth. Despite covering less than 0.1% of coastal regions, they have the capacity to bury up to 10% of marine organic matter and can bury the same amount of carbon 35 times faster than tropical rainforests. On land, the soil’s ability to sequestrate carbon is intimately linked to microbial metabolism. Despite the growing attention to the link between plant production, microbial communities, and the carbon cycle in terrestrial ecosystems, these processes remain enigmatic in the sea. Here, we show that seagrasses excrete organic sugars, namely in the form of sucrose, into their rhizospheres. Surprisingly, the microbial communities living underneath meadows do not fully use this sugar stock in their metabolism. Instead, sucrose piles up in the sediments to mM concentrations underneath multiple types of seagrass meadows. Sediment incubation experiments show that microbial communities living underneath a meadow use sucrose at low metabolic rates. Our metagenomic analyses revealed that the distinct community of microorganisms occurring underneath meadows is limited in their ability to degrade simple sugars, which allows these compounds to persist in the environment over relatively long periods of time. Our findings reveal how seagrasses form blue carbon stocks despite the relatively small area they occupy. Unfortunately, anthropogenic disturbances are threatening the long-term persistence of seagrass meadows. Given that these sediments contain a large stock of sugars that heterotopic bacteria can degrade, it is even more important to protect these ecosystems from degradation. |
|
229.1203 | [M+H-H2O]+PPM:8.8 |
Posidonia oceanica | root | MALDI (CHCA) |
20190613_MS1_A19r-18 - MTBLS1746Resolution: 17μm, 246x264
|
|
229.1198 | [M+H-H2O]+PPM:6.6 |
Posidonia oceanica | root | MALDI (CHCA) |
20190828_MS1_A19r-22 - MTBLS1746Resolution: 17μm, 292x279
|
|
gamma-Glutamylvaline is a dipeptide composed of gamma-glutamate and valine. It is an incomplete breakdown product of protein digestion or protein catabolism. Some dipeptides are known to have physiological or cell-signaling effects although most are simply short-lived intermediates on their way to specific amino acid degradation pathways following further proteolysis. gamma-Glutamylvaline belongs to the family of N-acyl-alpha amino acids and derivatives. These are compounds containing an alpha amino acid which bears an acyl group at its terminal nitrogen atom. It is found in urine (PMID: 3782411). γ-Glutamylvaline is an activator of CaSR with anti-inflammatory activity. γ-Glutamylvaline inhibits TNF-α-induced proinflammatory cytokine production and increases Wnt5a expression. γ-Glutamylvaline activates calcium-sensing receptor pathways in adipocytes of 3T3-L1 mice and prevents low-grade chronic inflammation[1].