Homovanillic acid (HVA)
Formula: C9H10O4 (182.0579)
Chinese Name: 4-羟基-3-甲氧基苯乙酸, 高香草酸, 高香草酸(HVA)
BioDeep ID: BioDeep_00000017338
( View LC/MS Profile)
SMILES: COC1=C(O)C=CC(CC(O)=O)=C1
Found 8 Sample Hits
m/z | Adducts | Species | Organ | Scanning | Sample | |
---|---|---|---|---|---|---|
205.0492 | [M+Na]+PPM:10.1 |
Posidonia oceanica | root | MALDI (CHCA) |
20190614_MS1_A19r-20 - MTBLS1746Resolution: 17μm, 262x276
Seagrasses are one of the most efficient natural sinks of carbon dioxide (CO2) on Earth. Despite covering less than 0.1% of coastal regions, they have the capacity to bury up to 10% of marine organic matter and can bury the same amount of carbon 35 times faster than tropical rainforests. On land, the soil’s ability to sequestrate carbon is intimately linked to microbial metabolism. Despite the growing attention to the link between plant production, microbial communities, and the carbon cycle in terrestrial ecosystems, these processes remain enigmatic in the sea. Here, we show that seagrasses excrete organic sugars, namely in the form of sucrose, into their rhizospheres. Surprisingly, the microbial communities living underneath meadows do not fully use this sugar stock in their metabolism. Instead, sucrose piles up in the sediments to mM concentrations underneath multiple types of seagrass meadows. Sediment incubation experiments show that microbial communities living underneath a meadow use sucrose at low metabolic rates. Our metagenomic analyses revealed that the distinct community of microorganisms occurring underneath meadows is limited in their ability to degrade simple sugars, which allows these compounds to persist in the environment over relatively long periods of time. Our findings reveal how seagrasses form blue carbon stocks despite the relatively small area they occupy. Unfortunately, anthropogenic disturbances are threatening the long-term persistence of seagrass meadows. Given that these sediments contain a large stock of sugars that heterotopic bacteria can degrade, it is even more important to protect these ecosystems from degradation. |
|
205.0487 | [M+Na]+PPM:7.7 |
Posidonia oceanica | root | MALDI (CHCA) |
20190822_MS1_A19r-19 - MTBLS1746Resolution: 17μm, 303x309
Seagrasses are among the most efficient sinks of carbon dioxide on Earth. While carbon sequestration in terrestrial plants is linked to the microorganisms living in their soils, the interactions of seagrasses with their rhizospheres are poorly understood. Here, we show that the seagrass, Posidonia oceanica excretes sugars, mainly sucrose, into its rhizosphere. These sugars accumulate to µM concentrations—nearly 80 times higher than previously observed in marine environments. This finding is unexpected as sugars are readily consumed by microorganisms. Our experiments indicated that under low oxygen conditions, phenolic compounds from P. oceanica inhibited microbial consumption of sucrose. Analyses of the rhizosphere community revealed that many microbes had the genes for degrading sucrose but these were only expressed by a few taxa that also expressed genes for degrading phenolics. Given that we observed high sucrose concentrations underneath three other species of marine plants, we predict that the presence of plant-produced phenolics under low oxygen conditions allows the accumulation of labile molecules across aquatic rhizospheres. |
|
205.0495 | [M+Na]+PPM:11.6 |
Posidonia oceanica | root | MALDI (CHCA) |
20190613_MS1_A19r-18 - MTBLS1746Resolution: 17μm, 246x264
|
|
221.1515 | [M+K]+PPM:18.8 |
Posidonia oceanica | root | MALDI (CHCA) |
20190613_MS1_A19r-18 - MTBLS1746Resolution: 17μm, 246x264
|
|
205.0492 | [M+Na]+PPM:10.1 |
Posidonia oceanica | root | MALDI (CHCA) |
20190828_MS1_A19r-22 - MTBLS1746Resolution: 17μm, 292x279
|
|
182.0569 | [M]+PPM:2.5 |
Posidonia oceanica | root | MALDI (CHCA) |
MS1_20180404_PO_1200 - MTBLS1746Resolution: 17μm, 193x208
|
|
200.0931 | [M+NH4]+PPM:6.8 |
Posidonia oceanica | root | MALDI (CHCA) |
MS1_20180404_PO_1200 - MTBLS1746Resolution: 17μm, 193x208
|
|
205.0482 | [M+Na]+PPM:5.2 |
Posidonia oceanica | root | MALDI (CHCA) |
MS1_20180404_PO_1200 - MTBLS1746Resolution: 17μm, 193x208
|
|
Homovanillic acid (HVA), also known as homovanillate, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. HVA is also classified as a catechol. HVA is a major catecholamine metabolite that is produced by a consecutive action of monoamine oxidase and catechol-O-methyltransferase on dopamine. HVA is typically elevated in patients with catecholamine-secreting tumors (such as neuroblastoma, pheochromocytoma, and other neural crest tumors). HVA levels are also used in monitoring patients who have been treated for these kinds tumors. HVA levels may also be altered in disorders of catecholamine metabolism such as monoamine oxidase-A (MOA) deficiency. MOA deficiency can cause decreased urinary HVA values, while a deficiency of dopamine beta-hydrolase (the enzyme that converts dopamine to norepinephrine) can cause elevated urinary HVA values. Within humans, HVA participates in a number of enzymatic reactions. In particular, HVA and pyrocatechol can be biosynthesized from 3,4-dihydroxybenzeneacetic acid and guaiacol. This reaction is catalyzed by the enzyme known as catechol O-methyltransferase. In addition, HVA can be biosynthesized from homovanillin through the action of the enzyme known aldehyde dehydrogenase. HVA has recently been found in a number of beers and appears to arise from the fermentation process (https://doi.org/10.1006/fstl.1999.0593). HVA is also a metabolite of Bifidobacterium (PMID: 24958563) and the bacterial breakdown of dietary flavonoids. Dietary flavonols commonly found in tomatoes, onions, and tea, can lead to significantly elevated levels of urinary HVA (PMID: 20933512). Likewise, the microbial digestion of hydroxytyrosol (found in olive oil) can also lead to elevated levels of HVA in humans (PMID: 11929304). Homovanillic acid is a monocarboxylic acid that is the 3-O-methyl ether of (3,4-dihydroxyphenyl)acetic acid. It is a catecholamine metabolite. It has a role as a human metabolite and a mouse metabolite. It is a member of guaiacols and a monocarboxylic acid. It is functionally related to a (3,4-dihydroxyphenyl)acetic acid. It is a conjugate acid of a homovanillate. Homovanillic acid is a natural product found in Aloe africana, Ginkgo biloba, and other organisms with data available. Homovanillic Acid is a monocarboxylic acid that is a catecholamine metabolite. Homovanillic acid may be used a marker for metabolic stress, tobacco usage or the presence of a catecholamine secreting tumor, such as neuroblastoma or pheochromocytoma. Homovanillic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A 3-O-methyl ETHER of (3,4-dihydroxyphenyl)acetic acid. See also: Ipomoea aquatica leaf (part of). Homovanillic acid is a major catecholamine metabolite. 3-Methoxy-4-hydroxyphenylacetic acid is found in beer, olive, and avocado. A monocarboxylic acid that is the 3-O-methyl ether of (3,4-dihydroxyphenyl)acetic acid. It is a catecholamine metabolite. Homovanillic acid is a dopamine metabolite found to be associated with aromatic L-amino acid decarboxylase deficiency, celiac disease, growth hormone deficiency, and sepiapterin reductase deficiency. Homovanillic acid is a dopamine metabolite found to be associated with aromatic L-amino acid decarboxylase deficiency, celiac disease, growth hormone deficiency, and sepiapterin reductase deficiency.