Strychnine
Formula: C21H22N2O2 (334.1681)
Chinese Name: 番木鳖碱, 士的宁
BioDeep ID: BioDeep_00000001646
( View LC/MS Profile)
SMILES: C1CN2CC3=CCOC4CC(=O)N5C6C4C3CC2C61C7=CC=CC=C75
Found 8 Sample Hits
m/z | Adducts | Species | Organ | Scanning | Sample | |
---|---|---|---|---|---|---|
299.1577 | [M+H-2H2O]+PPM:11.5 |
Vitis vinifera | Fruit | MALDI (DHB) |
grape_dhb_91_1 - Grape DatabaseResolution: 50μm, 120x114
Grape berries fruit, condition: Ripe |
|
335.1731 | [M+H]+PPM:6.8 |
Vitis vinifera | Fruit | MALDI (DHB) |
grape_dhb_91_1 - Grape DatabaseResolution: 50μm, 120x114
Grape berries fruit, condition: Ripe |
|
335.1732 | [M+H]+PPM:6.6 |
Vitis vinifera | Fruit | MALDI (DHB) |
grape_dhb_164_1 - Grape DatabaseResolution: 17μm, 136x122
Grape berries fruit, condition: Late |
|
299.1577 | [M+H-2H2O]+PPM:11.5 |
Vitis vinifera | Fruit | MALDI (DHB) |
grape_dhb_163_1 - Grape DatabaseResolution: 17μm, 132x115
Grape berries fruit, condition: Late |
|
335.1731 | [M+H]+PPM:6.8 |
Vitis vinifera | Fruit | MALDI (DHB) |
grape_dhb_163_1 - Grape DatabaseResolution: 17μm, 132x115
Grape berries fruit, condition: Late |
|
335.1724 | [M+H]+PPM:8.9 |
Posidonia oceanica | root | MALDI (CHCA) |
20190614_MS1_A19r-20 - MTBLS1746Resolution: 17μm, 262x276
Seagrasses are one of the most efficient natural sinks of carbon dioxide (CO2) on Earth. Despite covering less than 0.1% of coastal regions, they have the capacity to bury up to 10% of marine organic matter and can bury the same amount of carbon 35 times faster than tropical rainforests. On land, the soil’s ability to sequestrate carbon is intimately linked to microbial metabolism. Despite the growing attention to the link between plant production, microbial communities, and the carbon cycle in terrestrial ecosystems, these processes remain enigmatic in the sea. Here, we show that seagrasses excrete organic sugars, namely in the form of sucrose, into their rhizospheres. Surprisingly, the microbial communities living underneath meadows do not fully use this sugar stock in their metabolism. Instead, sucrose piles up in the sediments to mM concentrations underneath multiple types of seagrass meadows. Sediment incubation experiments show that microbial communities living underneath a meadow use sucrose at low metabolic rates. Our metagenomic analyses revealed that the distinct community of microorganisms occurring underneath meadows is limited in their ability to degrade simple sugars, which allows these compounds to persist in the environment over relatively long periods of time. Our findings reveal how seagrasses form blue carbon stocks despite the relatively small area they occupy. Unfortunately, anthropogenic disturbances are threatening the long-term persistence of seagrass meadows. Given that these sediments contain a large stock of sugars that heterotopic bacteria can degrade, it is even more important to protect these ecosystems from degradation. |
|
335.173 | [M+H]+PPM:7.1 |
Posidonia oceanica | root | MALDI (CHCA) |
20190613_MS1_A19r-18 - MTBLS1746Resolution: 17μm, 246x264
|
|
335.1727 | [M+H]+PPM:8 |
Posidonia oceanica | root | MALDI (CHCA) |
20190828_MS1_A19r-22 - MTBLS1746Resolution: 17μm, 292x279
|
|
Strychnine (/ˈstrɪkniːn, -nɪn/, STRIK-neen, -nin, US chiefly /-naɪn/ -nyne)[6][7] is a highly toxic, colorless, bitter, crystalline alkaloid used as a pesticide, particularly for killing small vertebrates such as birds and rodents. Strychnine, when inhaled, swallowed, or absorbed through the eyes or mouth, causes poisoning which results in muscular convulsions and eventually death through asphyxia.[8] While it is no longer used medicinally, it was used historically in small doses to strengthen muscle contractions, such as a heart and bowel stimulant[9] and performance-enhancing drug. The most common source is from the seeds of the Strychnos nux-vomica tree. Strychnine is a natural product found in Strychnos ignatii, Strychnos wallichiana D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants > D003292 - Convulsants A monoterpenoid indole alkaloid that is strychnidine bearing a keto substituent at the 10-position. D018377 - Neurotransmitter Agents > D018684 - Glycine Agents D009676 - Noxae > D011042 - Poisons Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.465 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.456 CONFIDENCE standard compound; INTERNAL_ID 694; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5745; ORIGINAL_PRECURSOR_SCAN_NO 5743 CONFIDENCE standard compound; INTERNAL_ID 694; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5769; ORIGINAL_PRECURSOR_SCAN_NO 5767 CONFIDENCE standard compound; INTERNAL_ID 694; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5764; ORIGINAL_PRECURSOR_SCAN_NO 5762 CONFIDENCE standard compound; INTERNAL_ID 694; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5713; ORIGINAL_PRECURSOR_SCAN_NO 5712 CONFIDENCE standard compound; INTERNAL_ID 694; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5746; ORIGINAL_PRECURSOR_SCAN_NO 5745 CONFIDENCE standard compound; INTERNAL_ID 694; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5749; ORIGINAL_PRECURSOR_SCAN_NO 5746 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2322