Djenkolic_acid
Formula: C7H14N2O4S2 (254.0395)
Chinese Name: 3,3-(亞甲二硫)雙丙胺酸, 3,3'-(亞甲二硫)雙丙胺酸
BioDeep ID: BioDeep_00000000684
( View LC/MS Profile)
SMILES: C(C(C(=O)O)N)SCSCC(C(=O)O)N
Found 10 Sample Hits
m/z | Adducts | Species | Organ | Scanning | Sample | |
---|---|---|---|---|---|---|
219.0265 | [M+H-2H2O]+PPM:3.9 |
Vitis vinifera | Fruit | MALDI (DHB) |
grape_dhb_91_1 - Grape DatabaseResolution: 50μm, 120x114
Grape berries fruit, condition: Ripe |
|
219.0263 | [M+H-2H2O]+PPM:3 |
Vitis vinifera | Fruit | MALDI (DHB) |
grape_dhb_164_1 - Grape DatabaseResolution: 17μm, 136x122
Grape berries fruit, condition: Late |
|
255.0459 | [M+H]+PPM:3.4 |
Vitis vinifera | Fruit | MALDI (DHB) |
grape_dhb_164_1 - Grape DatabaseResolution: 17μm, 136x122
Grape berries fruit, condition: Late |
|
219.0264 | [M+H-2H2O]+PPM:3.5 |
Vitis vinifera | Fruit | MALDI (DHB) |
grape_dhb_163_1 - Grape DatabaseResolution: 17μm, 132x115
Grape berries fruit, condition: Late |
|
255.0458 | [M+H]+PPM:3.8 |
Vitis vinifera | Fruit | MALDI (DHB) |
grape_dhb_163_1 - Grape DatabaseResolution: 17μm, 132x115
Grape berries fruit, condition: Late |
|
219.0261 | [M+H-2H2O]+PPM:2.1 |
Posidonia oceanica | root | MALDI (CHCA) |
20190614_MS1_A19r-20 - MTBLS1746Resolution: 17μm, 262x276
Seagrasses are one of the most efficient natural sinks of carbon dioxide (CO2) on Earth. Despite covering less than 0.1% of coastal regions, they have the capacity to bury up to 10% of marine organic matter and can bury the same amount of carbon 35 times faster than tropical rainforests. On land, the soil’s ability to sequestrate carbon is intimately linked to microbial metabolism. Despite the growing attention to the link between plant production, microbial communities, and the carbon cycle in terrestrial ecosystems, these processes remain enigmatic in the sea. Here, we show that seagrasses excrete organic sugars, namely in the form of sucrose, into their rhizospheres. Surprisingly, the microbial communities living underneath meadows do not fully use this sugar stock in their metabolism. Instead, sucrose piles up in the sediments to mM concentrations underneath multiple types of seagrass meadows. Sediment incubation experiments show that microbial communities living underneath a meadow use sucrose at low metabolic rates. Our metagenomic analyses revealed that the distinct community of microorganisms occurring underneath meadows is limited in their ability to degrade simple sugars, which allows these compounds to persist in the environment over relatively long periods of time. Our findings reveal how seagrasses form blue carbon stocks despite the relatively small area they occupy. Unfortunately, anthropogenic disturbances are threatening the long-term persistence of seagrass meadows. Given that these sediments contain a large stock of sugars that heterotopic bacteria can degrade, it is even more important to protect these ecosystems from degradation. |
|
277.0257 | [M+Na]+PPM:10.9 |
Posidonia oceanica | root | MALDI (CHCA) |
20190614_MS1_A19r-20 - MTBLS1746Resolution: 17μm, 262x276
Seagrasses are one of the most efficient natural sinks of carbon dioxide (CO2) on Earth. Despite covering less than 0.1% of coastal regions, they have the capacity to bury up to 10% of marine organic matter and can bury the same amount of carbon 35 times faster than tropical rainforests. On land, the soil’s ability to sequestrate carbon is intimately linked to microbial metabolism. Despite the growing attention to the link between plant production, microbial communities, and the carbon cycle in terrestrial ecosystems, these processes remain enigmatic in the sea. Here, we show that seagrasses excrete organic sugars, namely in the form of sucrose, into their rhizospheres. Surprisingly, the microbial communities living underneath meadows do not fully use this sugar stock in their metabolism. Instead, sucrose piles up in the sediments to mM concentrations underneath multiple types of seagrass meadows. Sediment incubation experiments show that microbial communities living underneath a meadow use sucrose at low metabolic rates. Our metagenomic analyses revealed that the distinct community of microorganisms occurring underneath meadows is limited in their ability to degrade simple sugars, which allows these compounds to persist in the environment over relatively long periods of time. Our findings reveal how seagrasses form blue carbon stocks despite the relatively small area they occupy. Unfortunately, anthropogenic disturbances are threatening the long-term persistence of seagrass meadows. Given that these sediments contain a large stock of sugars that heterotopic bacteria can degrade, it is even more important to protect these ecosystems from degradation. |
|
219.0267 | [M+H-2H2O]+PPM:4.8 |
Posidonia oceanica | root | MALDI (CHCA) |
20190613_MS1_A19r-18 - MTBLS1746Resolution: 17μm, 246x264
|
|
277.0263 | [M+Na]+PPM:8.7 |
Posidonia oceanica | root | MALDI (CHCA) |
20190613_MS1_A19r-18 - MTBLS1746Resolution: 17μm, 246x264
|
|
219.0263 | [M+H-2H2O]+PPM:3 |
Posidonia oceanica | root | MALDI (CHCA) |
MS1_20180404_PO_1200 - MTBLS1746Resolution: 17μm, 193x208
|
|
L-djenkolic acid is a dithioacetal consisting of two molecules of L-cysteine joined via their sulfanyl groups to methylene. It has a role as a plant metabolite and a toxin. It is a dithioacetal, a L-cysteine derivative and a non-proteinogenic L-alpha-amino acid. Djenkolic acid is a plant toxin found in the beans of the South-East Asian legumes jengkol (Archidendron jiringa). It is nephrotoxic to humans. (L1236) A dithioacetal consisting of two molecules of L-cysteine joined via their sulfanyl groups to methylene. Djenkolic acid is a sulfur-containing non-protein amino acid naturally found in the djenkol beans of the Southeast Asian plant Archidendron jiringa. Djenkolic Acid often causes renal injury, including hypersensitivity to or a direct toxic effect of a djenkol bean metabolite, resulting in acute kidney injury and/or urinary tract obstruction by djenkolic acid crystals, sludge, and/or possible ureteral spasms[1].