Bergenin

NCGC00346587-02_C14H16O9_Pyrano[3,2-c][2]benzopyran-6(2H)-one, 3,4,4a,10b-tetrahydro-3,4,8,10-tetrahydroxy-2-(hydroxymethyl)-9-methoxy-, (2R,3S,4S,4aR,10bS)-

Formula: C14H16O9 (328.0794)
Chinese Name: 岩白菜素, 岩白菜宁, 佛手配质, 虎耳草素, 矮茶素
BioDeep ID: BioDeep_00000000094 ( View LC/MS Profile)
SMILES: COC1=C(C=C2C(=C1O)C3C(C(C(C(O3)CO)O)O)OC2=O)O



Found 6 Sample Hits

m/z Adducts Species Organ Scanning Sample
311.074 [M+H-H2O]+
PPM:6.9
Vitis vinifera Fruit MALDI (DHB)
grape_dhb_91_1 - Grape Database
Resolution: 50μm, 120x114

Description

Grape berries fruit, condition: Ripe

329.0838 [M+H]+
PPM:8.8
Vitis vinifera Fruit MALDI (DHB)
grape_dhb_91_1 - Grape Database
Resolution: 50μm, 120x114

Description

Grape berries fruit, condition: Ripe

329.0825 [M+H]+
PPM:12.8
Vitis vinifera Fruit MALDI (DHB)
grape_dhb_164_1 - Grape Database
Resolution: 17μm, 136x122

Description

Grape berries fruit, condition: Late

311.0738 [M+H-H2O]+
PPM:7.5
Posidonia oceanica root MALDI (CHCA)
20190822_MS1_A19r-19 - MTBLS1746
Resolution: 17μm, 303x309

Description

Seagrasses are among the most efficient sinks of carbon dioxide on Earth. While carbon sequestration in terrestrial plants is linked to the microorganisms living in their soils, the interactions of seagrasses with their rhizospheres are poorly understood. Here, we show that the seagrass, Posidonia oceanica excretes sugars, mainly sucrose, into its rhizosphere. These sugars accumulate to µM concentrations—nearly 80 times higher than previously observed in marine environments. This finding is unexpected as sugars are readily consumed by microorganisms. Our experiments indicated that under low oxygen conditions, phenolic compounds from P. oceanica inhibited microbial consumption of sucrose. Analyses of the rhizosphere community revealed that many microbes had the genes for degrading sucrose but these were only expressed by a few taxa that also expressed genes for degrading phenolics. Given that we observed high sucrose concentrations underneath three other species of marine plants, we predict that the presence of plant-produced phenolics under low oxygen conditions allows the accumulation of labile molecules across aquatic rhizospheres.

329.081 [M+H]+
PPM:17.3
Posidonia oceanica root MALDI (CHCA)
20190613_MS1_A19r-18 - MTBLS1746
Resolution: 17μm, 246x264

Description

311.0738 [M+H-H2O]+
PPM:7.5
Posidonia oceanica root MALDI (CHCA)
MS1_20180404_PO_1200 - MTBLS1746
Resolution: 17μm, 193x208

Description


Bergenin is a trihydroxybenzoic acid. It has a role as a metabolite. Bergenin is a natural product found in Ficus racemosa, Ardisia paniculata, and other organisms with data available. A natural product found in Cenostigma gardnerianum. C26170 - Protective Agent > C275 - Antioxidant Annotation level-1 Bergenin is a cytoprotective and antioxidative polyphenol found in many medicinal plants. Bergenin has a wide spectrum activities such as hepatoprotective, antiinflammatory, immunomodulatory, antitumor, antiviral, and antifungal properties[1][2]. Bergenin is a cytoprotective and antioxidative polyphenol found in many medicinal plants. Bergenin has a wide spectrum activities such as hepatoprotective, antiinflammatory, immunomodulatory, antitumor, antiviral, and antifungal properties[1][2].