MSI_000019120
Unavailable
排名分数: -0.92
参考来源: Plant (PO:0020124: root stele)
M/z: 420.9698
Mass Window: 420.9698 ~ 420.9698 (none)
参考注释
myo-Inositol 1,4,5-trisphosphate_[M+H]+ (BioDeep_00000014427){[(1R,2S,3R,4R,5S,6R)-2,3,5-trihydroxy-4,6-bis(phosphonooxy)cyclohexyl]oxy}phosphonic acid
Formula: C6H15O15P3 (419.96238300000005)
SMILES:
O[C@@H]1[C@H](O)[C@@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@@H](O)[C@@H]1OP(O)(O)=O
myo-Inositol 1,4,5-trisphosphate (CAS: 20298-95-7), also known as Ins(1,4,5)P3 or InsP3, is an intracellular messenger formed by the action of phospholipase C on phosphatidylinositol 4,5-bisphosphate, which is one of the phospholipids that make up the cell membrane (PMID: 22453946). It is released into the cytoplasm where it releases calcium ions from internal stores within the cells endoplasmic reticulum. These calcium ions stimulate the activity of B kinase or calmodulin (PMID: 15189149). Its transient accumulation is due both to the enhanced metabolism via the Ca2+-calmodulin-sensitive Ins(1,4,5)P3 kinase, as well as a down-regulation of phosphatidylinositol 4,5-bisphosphate hydrolysis (PMID: 3041962). It is a major regulator of apoptotic signalling driving calcium (Ca2+) transients from the endoplasmic reticulum to mitochondria, thereby establishing a functional and physical link between these organelles. It also regulates autophagy through the interaction with Beclin 1 complex, and in particular, its inhibition/depletion strongly induces macroautophagy (PMID: 19325567). In addition, recent evidence suggests that the penetrating sperm delivers into mammalian eggs a novel isoform of phospholipase C (PLC), which promotes the formation of inositol 1,4,5-trisphosphate (PMID: 15362223). Intracellular messenger formed by the action of phospholipase C on phosphatidylinositol 4,5-bisphosphate, which is one of the phospholipids that make up the cell membrane. Inositol 1,4,5-trisphosphate is released into the cytoplasm where it releases calcium ions from internal stores within the cells endoplasmic reticulum. These calcium ions stimulate the activity of B kinase or calmodulin. (PubChem)